Question 1

Which SQL query should you use?

You are a developer for a Microsoft SQL Server 2008 R2 database instance. You create tables named order, customer, and product as follows:

```sql
CREATE TABLE [dbo].[order] ([OrderID] [int], [ProductID] [int], [CustomerID] [int], [OrderDate] [datetime]);
CREATE TABLE [dbo].[customer] ([CustomerID] [int], [CustomerName] [varchar](100), [Address] [varchar](200), [City] [varchar](100), [State] [varchar](50), [ZipCode] [varchar](5));
CREATE TABLE [dbo].[product] ([ProductID] [int], [ProductName] [varchar](100), [SalePrice] [money], [ManufacturerName] [varchar](100));
```

You need to write a query to sum the sales made to each customer by the following entries:

- The customer name and product name
- The grand total of all sales

Which SQL query should you use?

A. `SELECT p.ProductName, DATEPART(mm, o.OrderDate) AS OrderMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN order o ON p.ProductID = o.ProductID
GROUP BY ProductName, DATEPART(mm, o.OrderDate);`

B. `SELECT c.CustomerName, COUNT(o.OrderID) AS Orders
FROM customer c
INNER JOIN order o ON c.CustomerID = o.CustomerID
WHERE COUNT(o.OrderID) > 10
GROUP BY c.CustomerName;`

C. `SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN order o ON ProductID = o.ProductID
INNER JOIN customer c ON o.CustomerID = CustomerID
WHERE o.OrderDate > '09/01/2011'
GROUP BY c.CustomerName
HAVING AVG(p.SalePrice) >= 500;`

D. `SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN order o ON p.ProductID = o.ProductID
INNER JOIN customer c ON o.CustomerID = CustomerID
GROUP BY GROUPING SETS ((c.CustomerName, p.ProductName), ());`

E. `SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN order o ON p.ProductID = o.ProductID
INNER JOIN customer c ON o.CustomerID = CustomerID
GROUP BY GROUPING SETS ((c.CustomerName), (p.ProductName), ());`

F. `SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN order o ON p.ProductID = o.ProductID
INNER JOIN customer c ON o.CustomerID = CustomerID
GROUP BY CUBE;`

G. `SELECT c.CustomerName, p.ProductName, DATEPART(mm, o.OrderDate) AS OrderMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN order o ON p.ProductID = o.ProductID
GROUP BY CUBE(p.ProductName, DATEPART(mm, o.OrderDate));`

H. `SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN order o ON p.ProductID = o.ProductID
INNER JOIN customer c ON o.CustomerID = CustomerID
WHERE o.OrderDate > '09/01/2011'
AND AVG(p.SalePrice) >= 500;`

I. `SELECT c.CustomerName, p.ProductName, DATEPART(mm, o.OrderDate) AS OrderMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN order o ON p.ProductID = o.ProductID
GROUP BY p.ProductName, OrderMonth;

J. `SELECT c.CustomerName, COUNT(o.OrderID) AS Orders
FROM customer c
INNER JOIN order o ON c.CustomerID = o.CustomerID
GROUP BY c.CustomerName
HAVING COUNT(o.OrderID) > 10;`
Question 2
Which Transact-SQL statement should you use?
You have a table named Sales.SalesOrderHeader and a table named Person.Person.
You are tasked to write a query that returns SalesOrderID and SalesPersonName that have an OrderDate greater than 20040101. SalesPersonName should be made up by concatenating the columns named FirstName and LastName from the table named Person.Person.
You need to write a query to return data, sorted in alphabetical order, by the concatenation of FirstName and LastName. Which Transact-SQL statement should you use?
A. SELECT SalesOrderID, FirstName + ' ' + LastName as SalesPersonName
 FROM Sales.SalesOrderHeader H
 JOIN Person.Person P on P.BusinessEntityID = H.SalesPersonID
 WHERE OrderDate > '20040101'
 ORDER BY SalesPersonName DESC
B. SELECT SalesOrderID, FirstName + ' ' + LastName as SalesPersonName
 FROM Sales.SalesOrderHeader H
 JOIN Person.Person P on P.BusinessEntityID = H.SalesPersonID
 WHERE OrderDate > '20040101'
 ORDER BY FirstName ASC, LastName ASC
C. SELECT SalesOrderID, FirstName + ' ' + LastName as SalesPersonName
 FROM Sales.SalesOrderHeader H
 JOIN Person.Person P on P.BusinessEntityID = H.SalesPersonID
 WHERE OrderDate > '20040101'
 ORDER BY SalesPersonName ASC
D. SELECT SalesOrderID, FirstName + ' ' + LastName as SalesPersonName
 FROM Sales.SalesOrderHeader H
 JOIN Person.Person P on P.BusinessEntityID = H.SalesPersonID
 WHERE OrderDate > '20040101'
 ORDER BY FirstName DESC, LastName DESC
Correct Answer: C
Explanation/Reference:

Question 3
Which SQL query should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You are a developer for a Microsoft SQL Server 2008 R2 database instance. You create tables named order, customer, and product as follows:
CREATE TABLE [dbo].[order] ([OrderID] [int], [ProductID] [int], [CustomerID] [int], [OrderDate] [datetime]);
CREATE TABLE [dbo].[customer] ([CustomerID] [int], [CustomerName] [varchar](100), [Address] [varchar](200), [City] [varchar](100), [State] [varchar] (50), [ZipCode] [varchar](5));
CREATE TABLE [dbo].[product] ([ProductID] [int], [ProductName] [varchar](100), [SalePrice] [money], [ManufacturerName] [varchar](100));
You need to write a query to sum the sales made to each customer by the following entries:
•Each customer name
•Each product name
•The grand total of all sales
Which SQL query should you use?
A. SELECT p.ProductName, DATEPART(mm, o.OrderDate) OrderMonth, SUM(p.SalePrice) AS Sales
 FROM product p
 INNER JOIN [order] o ON p.ProductID = o.ProductID
 GROUP BY CUBE(p.ProductName, DATEPART(mm, o.OrderDate));
B. SELECT c.CustomerName,p.ProductName,SUM(p.SalePrice) AS Sales
 FROM product p
 INNER JOIN [order] o ON p.ProductID = o.ProductID
 INNER JOIN customer c ON o.CustomerID = c.CustomerID
 GROUP BY GROUPING SETS ((c.CustomerName), (p.ProductName), ());
C. SELECT c.CustomerName,p.ProductName,SUM(p.SalePrice) AS Sales
 FROM product p
 INNER JOIN [order] o ON p.ProductID = o.ProductID
 INNER JOIN customer c ON o.CustomerID = c.CustomerID
 GROUP BY GROUPING SETS ((c.CustomerName, p.ProductName), ());
D. SELECT c.CustomerName,p.ProductName,AVG(p.SalePrice) AS Sales
 FROM product p
 INNER JOIN [order] o ON p.ProductID = o.ProductID
 INNER JOIN customer c ON o.CustomerID = c.CustomerID
 WHERE o.OrderDate > '09/01/2011'
 HAVING AVG(p.SalePrice) >= 500
E. SELECT c.CustomerName,AVG(p.SalePrice) AS Sales
 FROM product p
 INNER JOIN [order] o ON p.ProductID = o.ProductID
 INNER JOIN customer c ON o.CustomerID = c.CustomerID
 WHERE o.OrderDate > '09/01/2011'
 AND AVG(p.SalePrice) >= 500
F. SELECT c.CustomerName,COUNT(o.OrderID) AS Orders
 FROM product p
 INNER JOIN [order] o ON p.ProductID = o.ProductID
 INNER JOIN customer c ON o.CustomerID = c.CustomerID
 WHERE o.OrderDate > '09/01/2011'
 GROUP BY c.CustomerName
 HAVING AVG(p.SalePrice) >= 500
FROM customer c
INNER JOIN [order] o ON c.CustomerID = o.CustomerID
WHERE COUNT(o.OrderID) > 10
GROUP BY c.CustomerName;

G. SELECT p.ProductName, DATEPART(mm, o.OrderDate) OrderMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
GROUP BY p.ProductName, DATEPART(mm, o.OrderDate);

H. SELECT p.ProductName, DATEPART(mm, o.OrderDate) OrderMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
GROUP BY CUBE;

I. SELECT p.ProductName, DATEPART(mm, o.OrderDate) OrderMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
GROUP BY p.ProductName, OrderMonth;

J. SELECT c.CustomerName, COUNT(o.OrderID) AS Orders
FROM customer c
INNER JOIN [order] o ON c.CustomerID = o.CustomerID
GROUP BY c.CustomerName
HAVING COUNT(o.OrderID) > 10;

Correct Answer: B
Explanation/Reference:

Question 4
Which results will the query return?
You have two tables named Customer and SalesOrder. In the Customer table you have 1000 customers, of which 900 customers have orders in the SalesOrder table.
You execute the following query to list all customers that have had at least one sale.
SELECT * FROM Customer WHERE Customer.CustomerID IN (SELECT SalesOrder.CustomerID FROM SalesOrder)
You need to identify the results of the query. Which results will the query return?
A. No rows
B. The 900 rows in the Customer table with matching rows in the SalesOrder table
C. The 1000 rows in the Customer table
D. A warning message
Correct Answer: B
Explanation/Reference:

Question 5
Which permissions should be granted?
You attempt to query sys.dm_db_index_usage_stats to check the status on the indexes in the Contoso database. The query fails and you receive the following error:
"The user does not have permission to perform this action."
You need to have the least amount of permissions granted to access the dynamic management views.
Which permissions should be granted?
A. CREATE EXTERNAL ACCESS ASSEMBLY
B. SELECT
C. CONTROL
D. VIEW SERVER STATE
Correct Answer: D
Explanation/Reference:

Question 6
Which permission set should you use?
You have created an assembly that utilizes unmanaged code to access external resources. You need to deploy the assembly with the appropriate permissions.
Which permission set should you use?
A. UNSAFE
B. EXTERNAL_ACCESS
C. SAFE
D. Default permission set
Correct Answer: A
Explanation/Reference:

Question 7
Which Transact-SQL statement should you use?
You have two tables. A table named Student.CurrentStudents contains the names of all students enrolled for the current year. Another table named Student.NewYearRoster contains the names of students who have enrolled for the upcoming year.
You have been tasked to write a MERGE statement to:

• Insert into Student.CurrentStudents the names of students who are enrolled for the upcoming year but not for the current year.
• Update information in Student.CurrentStudents for students who are enrolled both in the current year and in the upcoming year.
• Delete from Student.CurrentStudents the names of students who are not enrolled for the upcoming year.

You need to write the appropriate MERGE statement.

Which Transact-SQL statement should you use?

A. MERGE Student.CurrentStudents AS T USING Student.NewYearRoster AS S ON S.LastName = T.LastName AND S.FirstName = T.FirstName
WHEN MATCHED THEN UPDATE SET Address = S.Address, Age = S.Age
WHEN NOT MATCHED BY TARGET THEN INSERT (LastName, FirstName, Address, Age) VALUES (S.LastName, S.FirstName, S.Address, S.Age)
WHEN NOT MATCHED BY SOURCE THEN DELETE;

B. MERGE Student.CurrentStudents AS T USING Student.NewYearRoster AS S ON S.LastName = T.LastName AND S.FirstName = T.FirstName
WHEN MATCHED AND NOT T.Address = S.Address AND NOT T.Age = S.Age THEN UPDATE SET T.Age = S.Age, T.Address = S.Address
WHEN NOT MATCHED BY TARGET THEN INSERT (LastName, FirstName, Address, Age) VALUES (S.LastName, S.FirstName, S.Address, S.Age)
WHEN NOT MATCHED BY SOURCE THEN DELETE;

C. MERGE Student.CurrentStudents AS T USING Student.NewYearRoster AS S ON S.LastName = T.LastName AND S.FirstName = T.FirstName
WHEN MATCHED AND NOT T.Address = S.Address OR NOT T.Age = S.Age THEN UPDATE SET T.Address = S.Address, T.Age = S.Age
WHEN NOT MATCHED THEN INSERT (LastName, FirstName, Address, Age) VALUES (S.LastName, S.FirstName, S.Address, S.Age)
WHEN MATCHED THEN DELETE;

D. MERGE Student.CurrentStudents AS T USING Student.NewYearRoster AS S ON S.LastName = T.LastName AND S.FirstName = T.FirstName
WHEN NOT MATCHED THEN INSERT (LastName, FirstName, Address, Age) VALUES (S.LastName, S.FirstName, S.Address, S.Age)
WHEN NOT MATCHED BY SOURCE THEN UPDATE SET Address = T.Address, Age = T.Age;

Correct Answer: A

Explanation/Reference:

Question 8
Which result should you expect?

You have the following rows in the Customer Table:

CustomerId Status
--- -----
1 Active
2 Active
3 Inactive
4 NULL
5 Dormant
6 Dormant

You write the following query to return all customers that do not have NULL or ‘Dormant’ for their status:

SELECT * FROM Customer WHERE Status NOT IN (NULL, ’Dormant’)

You need to identify the results of the query. Which result should you expect?

A. CustomerId Status
--- -----
1 Active
2 Active
3 Inactive
4 NULL
B. CustomerId Status
--- -----
1 Active
2 Active
3 Inactive
4 NULL
C. CustomerId Status
--- -----
1 Active
2 Active
3 Inactive
4 NULL
5 Dormant
6 Dormant
D. CustomerId Status
--- -----
1 Active
2 Active
3 Inactive

Correct Answer: C

Explanation/Reference:

Question 9
Which Transact-SQL statements will fail?

You are the database developer for a customer service application. The database has the following table and view.

CREATE TABLE Tickets (TicketId int, Department varchar(200), Status varchar(200), IsArchived bit);
GO
CREATE VIEW SupportTickets (TicketId, Department, Status, IsArchived) AS
SELECT t.TicketId, t.Department, t.Status, t.IsArchived FROM Tickets t
WHERE t.Department = 'support' AND t.IsArchived = 0
WITH CHECK OPTION;
GO
INSERT INTO Tickets VALUES (1, 'support', 'open', 0), (2, 'support', 'open', 0), (3, 'support', 'open', 0);
GO
You are assigned to review another developer’s code. You need to verify that the entire code is functional. Which Transact-SQL statements will fail?
A. INSERT INTO Tickets VALUES (4, 'sales', 'open', 0), (5, 'support', 'open', 0), (6, 'support', 'open', 0)
B. UPDATE Tickets SET IsArchived = 1 WHERE TicketId IN (1, 2, 3)
C. UPDATE SupportTickets SET IsArchived = 1 WHERE TicketId IN (1, 2, 3)
D. UPDATE SupportTickets SET Status = 'closed' WHERE TicketId IN (1, 2, 3)
E. INSERT INTO SupportTickets VALUES (4, 'support', 'open', 0), (5, 'support', 'in progress', 0), (6, 'support', 'closed', 0)
F. INSERT INTO Tickets VALUES (4, 'support', 'open', 0), (5, 'support', 'in progress', 0), (6, 'support', 'closed', 0)
G. INSERT INTO SupportTickets VALUES (4, 'support', 'open', 1), (5, 'support', 'in progress', 1), (6, 'support', 'closed', 1)
H. DELETE FROM SupportTickets WHERE TicketId IN (1, 2, 3)

Correct Answer: CG

Explanation/Reference:

Question 10
Which three Transact-SQL statements should you use?
You administer a database named Contoso running on a Microsoft SQL Server 2008 R2 instance. You plan to implement custom error handling in your application. You need to implement custom error handling that meets the following requirements:
• The custom message is a reusable user-defined error message.
• The message returned to the application is an informational message that returns status information or error that is not severe.
• The custom message returned indicates that an error has occurred in the current database and current session.
Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and arrange them in the correct order.)
Build List and Reorder:

Correct Answer: C, E, F

Explanation/Reference:

Question 11
Which command should you use?
You are using the Database Engine Tuning Advisor (DTA) to analyze a workload. You need to save the recommendations generated by the DTA.
Which command should you use?
A. Export Session Results
Question 12
Which query should you use?
You have a table named Customer that has an XML column named Locations. This column stores an XML fragment that contains details of one or more locations, as shown in the following examples.

```
< Location City="Sydney" Address="…" PhoneNumber="…" />
< Location City="Chicago" Address="…" PhoneNumber="…" />
< Location City="London" Address="…" PhoneNumber="…" />
```

You need to write a query that returns a row for each of the customer’s locations. Each resulting row must include the customer name, city, and an XML fragment that contains the location details.

Which query should you use?
A. `SELECT CustomerName,Loc.value('@City','varchar(100)'),Loc.query('')` FROM Customer
C. `SELECT CustomerName,Locations.query('for $i in /Location return data()'),Locations.query('for $i in /Location return $i')` FROM Customer
B. `SELECT CustomerName,Locations.query('for $i in /Location return data()'),Locations.query('for $i in /Location return $i')` FROM Customer
D. `SELECT CustomerName,Locations.query('for $i in /Location return element Location ,$i}') FROM Customer`

Correct Answer: A
Explanation/Reference:

Question 13
Which Transact-SQL statement should you use?
Your company manufactures and distributes bicycle parts. You have a full-text catalog on the Inventory table which contains the PartName and Description columns.

You also use a full-text thesaurus to expand common bicycle terms.

You need to write a full-text query that will not only match the exact word in the search, but also the meaning.

Which Transact-SQL statement should you use?
A. `SELECT * FROM Inventory WHERE Description LIKE '%cycle%'`
B. `SELECT * FROM Inventory WHERE FREETEXT (*, 'cycle')`
C. `SELECT * FROM Inventory WHERE CONTAINS (*, 'FormsOf(Inflectional, cycle)')`
D. `SELECT * FROM Inventory WHERE CONTAINS (*, 'cycle')`

Correct Answer: B
Explanation/Reference:

Question 14
Which three Transact-SQL statements should you use?
You use a table that stores movie information in your database.
The table has the following schema:

```
CREATE TABLE Movies(
   MovieID nchar(4) NOT NULL,
   Title nvarchar(25) NOT NULL,
   MovieDescription nvarchar(50) NULL,
   Rating smallint NOT NULL CONSTRAINT Check_Rating CHECK (Rating between 1 AND 7),
   CONSTRAINT [PK_Movies] PRIMARY KEY CLUSTERED ([MovieID] ASC)
)
```

You plan to insert a new record for a movie that will be released by using the following information:

<table>
<thead>
<tr>
<th>Column</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>MovieID</td>
<td>M0999</td>
</tr>
<tr>
<td>Title</td>
<td>Movie to be released</td>
</tr>
<tr>
<td>MovieDescription</td>
<td>This movie is yet to be released</td>
</tr>
<tr>
<td>Rating</td>
<td>0</td>
</tr>
</tbody>
</table>

You need to ensure that the following requirements are met:

- Only this movie record gets a Rating of 0.
- Other movie records that will be inserted in the future must get a Rating of 1 through 7.

Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and arrange them in the correct order.)

Build List and Reorder:
Question 15
Which Transact-SQL statement should you use?
You are the administrator of a SQL Server database. Database table modifications and additions must occur only between 11:00 P.M. and midnight. You need to ensure that if database table modifications or additions are attempted at any other time, an error is raised and the attempt is not successful. Which Transact-SQL statement should you use?

A. CREATE TRIGGER TRG_TABLES_ON_LAST_HOUR ON ALL SERVER FOR ALTER_DATABASE AS IF DATEPART(hour, getdate())<>1 BEGIN ROLLBACK RAISERROR (‘Must wait.’, 16, 1) END
B. CREATE TRIGGER TRG_TABLES_ON_LAST_HOUR ON DATABASE FOR CREATE_TABLE AS IF DATEPART(hour, getdate())<>23 BEGIN RAISERROR (‘Must wait.’, 16, 1) END
C. CREATE TRIGGER TRG_TABLES_ON_LAST_HOUR ON DATABASE FOR CREATE_TABLE, ALTER_TABLE AS IF DATEPART(hour, getdate())<>23 BEGIN RAISERROR (‘Must wait.’, 16, 1) END
D. CREATE TRIGGER TRG_TABLES_ON_LAST_HOUR ON DATABASE FOR CREATE_TABLE, ALTER_TABLE AS IF DATEPART(hour, getdate())<>23 BEGIN ROLLBACK RAISERROR (‘Must wait.’, 16, 1) END

Correct Answer: D
Explanation/Reference:

Question 16
Which query should you use?
You need to generate the following XML document.

```
<ProductExport>
  <Product Price="99">Product1</Product>
  <Product Price="199">Product2</Product>
  <Product Price="299">Product3</Product>
  <Product Price="399">Product4</Product>
</ProductExport>
```

Which query should you use?
A. SELECT Price, ProductName FROM Products
Question 17
Which Transact-SQL statement should you use?
You administer a Microsoft SQL Server 2008 R2 database that has a table named Customer.
The table has the following definition:
CREATE TABLE Customer (
CustomerID int NOT NULL PRIMARY KEY,
FirstName varchar(255) NOT NULL,
LastName varchar(255) NOT NULL,
CustomerAddress varchar(1024)
)
The database also has a table named CustomerExclusionList. Data will be added to the CustomerExclusionList table regularly.
The CustomerExclusionList table has the following definition:
CREATE TABLE CustomerExclusionList (FirstName varchar(255) NOT NULL, LastName varchar(255) NOT NULL)
You need to create a view that returns all records and columns of the Customer table that are not present in the CustomerExclusionList table.
Which Transact-SQL statement should you use?
A. CREATE VIEW vw_ValidCustomer AS
 SELECT FirstName, LastName
 FROM Customer c
 EXCEPT
 SELECT FirstName, LastName
 FROM CustomerExclusionList
B. CREATE VIEW vw_ValidCustomer AS
 SELECT c. CustomerID, c. FirstName, c. LastName, c. CustomerAddress
 FROM Customer c
 INNER JOIN CustomerExclusionList cel ON c. FirstName = cel. FirstName AND c. LastName = cel. LastName
C. CREATE VIEW vw_ValidCustomer AS
 SELECT c. CustomerID, c. FirstName, c. LastName, c. CustomerAddress
 FROM Customer c
 LEFT OUTER JOIN CustomerExclusionList cel ON c. FirstName = cel. FirstName AND c. LastName = cel. LastName
 WHERE cel. FirstName IS NULL
D. CREATE VIEW vw_ValidCustomer AS
 SELECT c. CustomerID, c. FirstName, c. LastName, c. CustomerAddress
 FROM Customer c
 INNER JOIN CustomerExclusionList cel ON c. FirstName = cel. FirstName
 INNER JOIN CustomerExclusionList cel ON c. LastName = cel. LastName
 E. CREATE VIEW vw_ValidCustomer AS
 SELECT c. CustomerID, c. FirstName, c. LastName, c. CustomerAddress
 FROM Customer c
 LEFT OUTER JOIN CustomerExclusionList cel ON c. FirstName = cel. FirstName AND c. LastName = cel. LastName
 WHERE cel. FirstName IS NOT NULL
F. CREATE VIEW vw_ValidCustomer AS
 SELECT c. CustomerID, c. FirstName, c. LastName, c. CustomerAddress
 FROM Customer c
 INTERSECT
 SELECT c. CustomerID, c. FirstName, c. LastName, c. CustomerAddress
 FROM Customer c
 INNER JOIN CustomerExclusionList cel ON c. FirstName = cel. FirstName AND c. LastName = cel. LastName
G. CREATE VIEW vw_ValidCustomer AS
 SELECT c. CustomerID, c. FirstName, c. LastName, c. CustomerAddress
 FROM Customer c
 LEFT OUTER JOIN CustomerExclusionList cel ON c. FirstName = cel. FirstName AND c. LastName = cel. LastName
 WHERE cel. FirstName IS NOT NULL
H. CREATE VIEW vw_ValidCustomer AS
 SELECT c. CustomerID, c. FirstName, c. LastName, c. CustomerAddress
 FROM Customer c
 EXCEPT
 SELECT CustomerID, FirstName, LastName, CustomerAddress
 FROM CustomerExclusionList
Correct Answer: CE
Explanation/Reference:
Question 18
What result should you expect?
You work for a company that provides marketing data to other companies.
You have the following Transact-SQL statement:
DECLARE @CustomerDemographics XML
SET @CustomerDemographics=N'<CustomerDemographics>
 < Customer CustomerID="1" Age="21" Education="High School">
 < IsCoffeeDrinker>0</IsCoffeeDrinker>
 < /Customer>
 < Customer CustomerID="2" Age="27" Education="College">
 < IsCoffeeDrinker>1</IsCoffeeDrinker>
 < IsFriendly>1</IsFriendly>
 < /Customer>
 < Customer CustomerID="3" Age="35" Education="Unknown">
 < IsCoffeeDrinker>1</IsCoffeeDrinker>
 < IsFriendly>1</IsFriendly>
 < /Customer></CustomerDemographics>'
DECLARE @OutputAgeOfCoffeeDrinkers XML
SET @OutputAgeOfCoffeeDrinkers = @CustomerDemographics.query('for $output in /child::CustomerDemographics/child::Customer
[(child::IsCoffeeDrinker[1] cast as xs:boolean ?)]
return <CoffeeDrinkingCustomer> { $output/attribute::Age }</CoffeeDrinkingCustomer>')</Customer>
SELECT @OutputAgeOfCoffeeDrinkers
You need to determine the result of the query. What result should you expect?
A. <CoffeeDrinkingCustomer Age="27"/>
B. <CustomerDemographics>
 < Customer>
 < CoffeeDrinkingCustomer Age="21"/>
 < /Customer>
 < /CustomerDemographics>
C. <CustomerDemographics>
 < Customer>
 < CoffeeDrinkingCustomer Age="27"/>
 < /Customer>
 < Customer>
 < CoffeeDrinkingCustomer Age="35"/>
 < /Customer>
 < /CustomerDemographics>
D. <CoffeeDrinkingCustomer Age="21"/>
Correct Answer: A
Explanation/Reference:

Question 19
What should you do?
You have a SQL Server database. The database contains two schemas named Marketing and Sales. The Marketing schema is owned by a user named MarketingManager. The Sales schema is owned by a user named SalesManager. A user named John must be able to access the Sales.Orders table by using a stored procedure named Marketing.GetSalesSummary. John is not granted a SELECT permission on the Sales.Orders table. A user named SalesUser does have SELECT permission on the Sales.Orders table.
You need to implement appropriate permissions for John and the stored procedure Marketing.GetSalesSummary.
What should you do?
A. Marketing.GetSalesSummary should be created by using the EXECUTE AS SELF clause.
B. Marketing.GetSalesSummary should be created by using the EXECUTE AS OWNER clause.
C. Marketing.GetSalesSummary should be created by using the EXECUTE AS 'SalesUser' clause.
D. Marketing.GetSalesSummary should be created without an EXECUTE AS clause.
Correct Answer: C
Explanation/Reference:

Question 20
Which code segment should you use?
You create a stored procedure that contains proprietary formulas. You need to ensure that no users are able to access Microsoft SQL Server Management Studio to view the definition of the stored procedure.
Which code segment should you use?
A. CREATE PROCEDURE Sales.uspFormula WITH EXECUTE AS SELF
B. CREATE PROCEDURE Sales.uspFormula WITH RECOMPILE
C. CREATE PROCEDURE Sales.uspFormula WITH EXECUTE AS OWNER
D. CREATE PROCEDURE Sales.uspFormula WITH ENCRYPTION
Question 21
Which Transact-SQL statement or statements should you use?
You administer a Microsoft SQL Server 2008 R2 instance configured to use WindowsAuthentication.
The database contains a table named CustomerTransaction that has the following definition:
CREATE TABLE dbo.CustomerTransaction(
CustomerTransactionId int NOT NULL PRIMARY KEY,
CustomerID int NOT NULL,
TransactionAmount money NOT NULL)
You define the following table:
CREATE TABLE dbo.CustomerWarningLog(
CustomerWarningLogId int NOT NULL identity PRIMARY KEY,
CustomerId int NOT NULL,
Balance money NOT NULL,
LogTime datetime2(0) NOT NULL,
LogUserName nvarchar(128) NOT NULL)
You need to ensure that the following requirements are met:
• An entry is logged in CustomerWarningLog when a customer’s account balance is less than 100.00.
• The Transaction LogUserName is set to the login name of the user who modifies the CustomerTransaction table.
Which Transact-SQL statement or statements should you use?
A. CREATE TRIGGER dbo.CustomerTransaction_InsertUpdateDeleteTrigger ON dbo.CustomerTransaction
FOR INSERT, UPDATE, DELETE
AS
IF UPDATE(CustomerID)
WITH TotalCTE AS
(SELECT CustomerId, SUM(TransactionAmount) AS Balance
FROM dbo.CustomerTransaction
WHERE CustomerId in (SELECT CustomerId
FROM inserted)
UNION ALL
SELECT CustomerId
FROM deleted)
SELECT @CustomerId = CustomerId, @Balance = Balance
FROM TotalCTE WHERE TotalCTE.Balance < 100

FOR INSERT, UPDATE
AS
IF UPDATE(CustomerID) or UPDATE(TransactionAmount)
WITH TotalCTE AS
(SELECT CustomerId, SUM(TransactionAmount) AS Balance
FROM dbo.CustomerTransaction
WHERE CustomerId in (SELECT CustomerId
FROM inserted)
UNION ALL
SELECT CustomerId
FROM deleted)
SELECT @CustomerId = CustomerId, @Balance = Balance
FROM TotalCTE WHERE TotalCTE.Balance < 100

C. CREATE TRIGGER dbo.CustomerTransaction_InsertUpdateDeleteTrigger ON dbo.CustomerTransaction
FOR INSERT, UPDATE, DELETE
AS
DECLARE @CustomerId int, @Balance money
WITH TotalCTE AS
(SELECT CustomerId, SUM(TransactionAmount) AS Balance
FROM dbo.CustomerTransaction
WHERE CustomerId in (SELECT CustomerId
FROM inserted)
UNION ALL
SELECT CustomerId
FROM deleted)
SELECT @CustomerId = CustomerId, @Balance = Balance
FROM TotalCTE WHERE TotalCTE.Balance < 100
IF @@rowcount > 0
INSERT dbo.CustomerWarningLog(CustomerId, Balance, LogTime, LogUserName)
SELECT @CustomerId, @Balance, SYSDATETIME(), SUSER_SNAME()

D. CREATE TRIGGER dbo.CustomerTransaction_InsertUpdateDeleteTrigger ON dbo.CustomerTransaction
FOR INSERT, UPDATE, DELETE
AS
IF UPDATE(CustomerID) or UPDATE(TransactionAmount)
WITH TotalCTE AS
(SELECT CustomerId, SUM(TransactionAmount) AS Balance
FROM dbo.CustomerTransaction
WHERE CustomerId in (SELECT CustomerId
FROM inserted)
UNION ALL
SELECT CustomerId
FROM deleted)
GROUP BY CustomerId)
INSERT dbo.CustomerWarningLog(CustomerId, Balance, LogTime, LogUserName)
SELECT CustomerId, Balance, SYSDATETIME(), SUSER_SNAME()
FROM TotalCTE WHERE TotalCTE.Balance < 100
GO

E. CREATE TRIGGER dbo.CustomerTransaction_InsertUpdateDeleteTrigger ON dbo.CustomerTransaction
FOR INSERT, UPDATE, DELETE
AS
DECLARE @CustomerId int, @Balance money
WITH TotalCTE AS
(SELECT CustomerId, SUM(TransactionAmount) AS Balance
FROM dbo.CustomerTransaction
WHERE CustomerId in (SELECT CustomerId
FROM inserted)
UNION ALL
SELECT CustomerId
FROM deleted)
SELECT @CustomerId = CustomerId, @Balance = Balance
FROM TotalCTE WHERE TotalCTE.Balance < 100
IF @CustomerId IS NULL
INSERT dbo.CustomerWarningLog(CustomerId, Balance, LogTime, LogUserName)
SELECT @CustomerId, @Balance, SYSDATETIME(), USER_NAME()
GO

F. CREATE TRIGGER dbo.CustomerTransaction_InsertUpdateDeleteTrigger ON dbo.CustomerTransaction
FOR INSERT, UPDATE, DELETE
AS
WITH TotalCTE AS
(SELECT CustomerId, SUM(TransactionAmount) AS Balance
FROM dbo.CustomerTransaction
WHERE CustomerId in (SELECT CustomerId
FROM inserted)
UNION ALL
SELECT CustomerId
FROM deleted)
INSERT dbo.CustomerWarningLog(CustomerId, Balance, LogTime, LogUserName)
SELECT CustomerId, Balance, SYSDATETIME(), SUSER_SNAME()
FROM TotalCTE WHERE TotalCTE.Balance <= 100
GO

FOR UPDATE, DELETE
AS
WITH TotalCTE AS
(SELECT CustomerId, SUM(TransactionAmount) AS Balance
FROM dbo.CustomerTransaction
WHERE TransactionAmount < 100
AND CustomerId in (SELECT CustomerId
FROM deleted)
GROUP BY CustomerId)
INSERT dbo.CustomerWarningLog(CustomerId, Balance, LogTime, LogUserName)
SELECT CustomerId, Balance, SYSDATETIME(), SUSER_SNAME()
FROM TotalCTE
GO

FOR INSERT, UPDATE, DELETE
AS
WITH TotalCTE AS
(SELECT CustomerId, SUM(TransactionAmount) AS Balance
FROM dbo.CustomerTransaction
WHERE CustomerId in (SELECT CustomerId
UNION ALL
SELECT CustomerId
FROM deleted)
SELECT CustomerId, Balance, SYSDATETIME(), SUSER_SNAME()
FROM TotalCTE WHERE TotalCTE.Balance < 100
GO

Correct Answer: DH
Explanation/Reference:
Question 22
Which option should you enable?
You are writing a batch that contains multiple UPDATE statements to modify existing products. You have placed these updates into one explicit transaction.
You need to set an option at the beginning of the transaction to roll back all changes if any of the updates in the transaction fail.
Which option should you enable?
A. REMOTE_PROC_TRANSACTIONS
B. ARITHABORT
C. XACT_ABORT
D. IMPLICIT_TRANSACTIONS

Correct Answer: C
Explanation/Reference:

Question 23
Which Transact-SQL statement should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You administer a Microsoft SQL Server 2008 database named AdventureWorks that contains a table named Production.Product. The table contains a primary key named PK_Product_ProductID and a non-clustered index named AK_Product_ProductNumber. Both indexes have been created on a single primary partition.
The table has the following definition:
CREATE TABLE [Production].[Product](
 [ProductID] [int] IDENTITY(1,1) NOT NULL,
 [Name] [nvarchar](50) NOT NULL,
 [ProductNumber] [nvarchar](25) NOT NULL,
 [Color] [nvarchar](15) NULL,
 [Class] [nchar](2) NULL,
 [Style] [nchar](2) NULL,
 [ModifiedDate] [datetime] NOT NULL,
 CONSTRAINT [PK_Product_ProductID] PRIMARY KEY CLUSTERED ([ProductID] ASC) ON [PRIMARY]) ON [PRIMARY]
GO
The index has the following definition:
GO
The Production.Product table contains 1 million rows. You want to ensure that data retrieval takes the minimum amount of time when the queries executed against the Production.Product table are ordered by product number or filtered by class. You observe that the average fragmentation for the AK_Product_ProductNumber index is 24 percent. You need to reduce fragmentation. You need to achieve this goal without blocking access to table data.
Which Transact-SQL statement should you use?
A. EXEC sys.sp_configure 'index create memory', 1
B. CREATE STATISTICS ProductClass_StatsON Production.Product (Name, ProductNumber, Class) WHERE Class <> null
C. UPDATE INDEX AK_Product_ProductNumber ON Production.Product SET (STATISTICS_NORECOMPUTE = ON)
D. ALTER DATABASE [AdventureWorks] SET AUTO_UPDATE_STATISTICS ON
E. DBCC SHOW_STATISTICS (‘Production.Product’, AK_Product_ProductNumber)
F. CREATE STATISTICS ProductClass_StatsON Production.Product (Name, ProductNumber, Class) WHERE Class is not null
G. ALTER INDEX AK_Product_ProductNumber ON Production.Product REORGANIZE
H. CREATE STATS ProductClass_StatsON Production.Product (Name, ProductNumber, Class) WHERE Class is not null WITH SAMPLE 100 PERCENT
I. SELECT * FROM sys.dm_db_index_operational_stats (DB_ID(), OBJECT_ID(N'Production.Product'),NULL, NULL)
J. SELECT * FROM STATS WHERE name=N’Production.Product’
K. SELECT * FROM SYS.STATS WHERE name=N’AK_Product_ProductNumber’
L. ALTER INDEX AK_Product_ProductNumber ON Production.Product REBUILD Partition = 1
M. UPDATE STATISTICS Production.Product
N. SELECT * FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID(N’Production.Product’),NULL, NULL)
O. ALTER INDEX AK_Product_ProductNumber ON Production.Product REBUILD
P. ALTER STATISTICS Production.Product
Q. SELECT * FROM sys.indexes where name=N’Production.Product’

Correct Answer: G
Explanation/Reference:

Question 24
Which Transact-SQL statement should you use?
You administer a Microsoft SQL Server 2008 database named AdventureWork that contains a table named Production.Product.
The table has the following definition:
CREATE TABLE [Production].[Product](
 [ProductID] [int] IDENTITY(1,1) NOT NULL,
 [ProductName] [nvarchar](50) NOT NULL,
 [ListPrice] [money] NOT NULL,
 [ProductionDate] [datetime] NULL,
 [UserCreated] [nvarchar](128) NOT NULL,
 [DateCreated] [datetime] NOT NULL DEFAULT GETDATE(),
 [ListPrice] [money] NOT NULL,
 [ProductNumber] [nvarchar](25) NOT NULL,
 [Color] [nvarchar](15) NULL,
 [Class] [nchar](2) NULL,
 [Style] [nchar](2) NULL,
 [ModifiedDate] [datetime] NOT NULL,
 CONSTRAINT [PK_Product_ProductID] PRIMARY KEY CLUSTERED ([ProductID] ASC) ON [PRIMARY]),ON [PRIMARY]
GO
GO
You want to add a new product named Widget and a list price of 10.50 U.S. dollars to the product table. You need to add a record for the product information.

You also need to set the DateCreated field to the current date and the UserCreated field to your Windows login identification name.

Which Transact-SQL statement should you use?

A. INSERT INTO [Production].[Product](ProductID, ProductName, ListPrice, UserCreated, DateCreated)
 values(1, 'Widget', 10.50, system_user, GETDATE())
B. INSERT INTO [Production].[Product](ProductID, ProductName, ListPrice, UserCreated)
 values('Widget', 10.50, system_user)
C. INSERT INTO [Production].[Product](ProductID, ProductName, ListPrice, UserCreated, ProductionDate)
 values('Widget', 10.50, system_user, GETDATE())
D. INSERT INTO [Production].[Product](ProductID, ProductName, ListPrice, UserCreated, DateCreated)
 values('Widget', 10.50, system_user, GETDATE())
E. INSERT INTO [Production].[Product](ProductID, ProductName, ListPrice, UserCreated, DateCreated)
 select 1, 'Widget', 10.50, system_user, GETDATE()
F. INSERT INTO [Production].[Product](ProductID, ProductName, ListPrice, UserCreated)
 select 'Widget', 10.50, system_user
G. INSERT INTO [Production].[Product](ProductID, ProductName, ListPrice, UserCreated, ProductionDate)
 select 'Widget', 10.50, system_user, GETDATE()
H. INSERT INTO [Production].[Product](ProductID, ProductName, ListPrice, DateCreated)
 select 'Widget', 10.50, GETDATE()

Correct Answer: BF

Explanation/Reference:

Question 25
WHERE Surname = @SearchName COLLATE Cyrillic_General_CI_AS
You have a table named Person that contains a nvarchar column named Surname. The Person table currently has a clustered index on PersonID. The Surname column contains Russian and Japanese characters. The following code segment will be used to search by Surname.

IF @lang = 'Russian'
 SELECT PersonID, Surname
 FROM Person
 WHERE Surname = @SearchName COLLATE Cyrillic_General_CI_AS
IF @lang = 'Japanese'
 SELECT PersonID, Surname
 FROM Person
 WHERE Surname = @SearchName COLLATE Japanese_CI_AS_KS
You need to enable SQL Server to perform an index seek for these queries.

What should you do?
A. Create a computed column for each collation that needs to be searched. Create an index on each computed column.
B. Create a new column for each collation that needs to be searched and copy the data from the Surname column. Create an index on each new column.
C. Create a computed column for each collation that needs to be searched. Create an index on the Surname column.
D. Create an index on the Surname column.

Correct Answer: A
Explanation/Reference:

Question 26
Which Transact-SQL statement should you use?
You have the following xml:

<Site URL="http://www.contoso.com/index.htm" />
<Site URL="http://www.contoso.com/finance/index.htm" />
<Site URL="http://www.contoso.com/finance/reports/index.htm" />
<Site URL="http://www.contoso.com/finance/main/index.htm" />
</Site>
<Site URL="http://www.contoso.com/marketing/index.htm" />
<Site URL="http://www.contoso.com/marketing/reports/index.htm" />
<Site URL="http://www.contoso.com/marketing/main/index.htm" />
</Site>
<Site URL="http://www.contoso.com/sales/index.htm" />
</Site>

You are tasked to query the sites listed in the xml by using OPENXML. The results will have two columns, ParentSiteURL and SiteURL. You need to write the OPENXML query.

Which Transact-SQL statement should you use?

Exhibit:
ParentSiteURL	SiteURL
NULL | http://www.contoso.com/index.htm

Correct Answer: D

Explanation/Reference:

Question 27
Which total number of rows should you choose?
You create and populate two tables by using the following Transact-SQL statements:
CREATE TABLE CurrentStudents (LastName VARCHAR(50), FirstName VARCHAR(50), Address VARCHAR(100), Age INT);
INSERT INTO CurrentStudents VALUES ('Fritz', 'David', '181 Kline Street', 14), ('Reese', 'Paul', '4429 South Union', 14), ('Brown', 'Jake', '5401 Washington Ave', 14), ('Smith', 'Tom', '124 Water St', 14), ('Holtz', 'Mary', '984 Mass Ct', 14), ('Robbins', 'Jan', '4449 Union Ave', 14), ('Larsen', 'Frank', '5812 Meadow St', 14), ('Bishop', 'Cathy', '14429 Skyhigh Ave', 14), ('Francis', 'Thomas', '15401 120th St', 14);
CREATE TABLE NewYearRoster(LastName VARCHAR(50), FirstName VARCHAR(50), Address VARCHAR(100), Age INT);
You run the following MERGE statement to update, insert and delete rows in the CurrentStudents table:
MERGE TOP (3) CurrentStudents AS T USING NewYearRoster AS S ON S.LastName = T.LastName AND S.FirstName = T.FirstName
WHEN MATCHED AND NOT (T.Age = S.Age OR T.Address = S.Address) THEN UPDATE SET Address = S.Address, Age = S.Age
WHEN NOT MATCHED BY TARGET THEN INSERT (LastName, FirstName, Address, Age) VALUES (S.LastName, S.FirstName, S.Address, S.Age)
WHEN NOT MATCHED BY SOURCE THEN DELETE;
You need to identify the total number of rows that are updated, inserted, and deleted in the CurrentStudent table.
Which total number of rows should you choose?
A. 9
B. 0
C. 3
D. 6
Correct Answer: C
Question 28
Which two actions should you perform in sequence?

You administer a Microsoft SQL Server 2008 R2 database instance named AdventureWorks.

A user who has the db_datareader permissions on the AdventureWorks database wants to view the estimated execution plan XML output document for the following query:

```
SELECT * FROM Sales.SalesOrderHeader WHERE OnlineOrderFlag = 1 AND SubTotal > 500
```

You need to ensure that the user can view the document.

Which two actions should you perform in sequence? (To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.)

Correct Answer:
A. Grant the following permission to the user: GRANT SHOWPLAN
 SET SHOWPLAN_XML ON

D. Request the user to run the following command: SET SHOWPLAN_XML ON

Explanation/Reference:

Question 29
Which three Transact-SQL statements should you use?

You administer a Microsoft SQL Server 2008 instance that has two databases.

The first database named AdventureWorks contains a table named Sales.SalesOrders.

The Sales.SalesOrders table has the following definition:

```
CREATE TABLE [Sales].[SalesOrderDetail]
([SalesOrderDetailID] [int] IDENTITY(1,1) NOT NULL,
 [ProductID] [int] NOT NULL,
 [OrderQty] [smallint] NOT NULL,
 [OrderDate] [datetime] NOT NULL,
 CONSTRAINT [PK_SalesOrderDetail] PRIMARY KEY CLUSTERED ([SalesOrderDetailID] ASC)) ON [PRIMARY]
```

The second database named AdventureWorksDW contains a table named dbo.SalesOrderSummary.

The dbo.SalesOrderSummary table has the following definition:

```
CREATE TABLE [dbo].[SalesOrderSummary]
([ProductID] [int] NOT NULL,
 [OrderQty] [int] NOT NULL,
 [OrderYear] [int] NOT NULL,
 CONSTRAINT [PK_SalesOrderSummary] PRIMARY KEY CLUSTERED (OrderYear ASC, ProductID ASC)) ON [PRIMARY]
```

You plan to migrate sales data for the year 2011 from the SalesOrderDetail table into the SalesOrderSummary table.

You need to ensure that the following requirements are met:

• All data is removed from the SalesOrderSummary table before migrating data.
• A subset of data is migrated from the SalesOrderDetail table in the AdventureWorks database to the SalesOrderSummary table in the AdventureWorksDW database.
• Migrated data summarizes order quantity in one row per product for the year 2011.

Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and arrange them in the correct order.)

Build List and Reorder:
What results should the query produce?

You have a table named Subcategories that contains subcategories for socks, vests and helmets. You have another table named Products that contains products only from the subcategories socks and vests. You have the following query:

```
SELECT s.Name, p.Name AS ProductName
FROM Subcategories s
OUTER APPLY
(SELECT * FROM Products pr
WHERE pr.SubcategoryID = s.SubcategoryID) p
WHERE s.Name IS NOT NULL;
```

What results should the query produce?

A. Name ProductName

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Socks Mountain Bike Socks,</td>
<td>Socks Mountain Bike Socks,</td>
</tr>
<tr>
<td>Socks Racing Socks,</td>
<td>MSocks Racing Socks,</td>
</tr>
<tr>
<td>LVests Classic Vest,</td>
<td>MVests Classic Vest,</td>
</tr>
</tbody>
</table>

Correct Answer:

B. USE AdventureWorksDW GO

D. TRUNCATE TABLE dbo.SalesOrderSummary GO

G. INSERT dbo.SalesOrderSummary (ProductID, OrderQty, OrderYear)
SELECT ProductID, SUM(OrderQty) AS OrderQty, YEAR(OrderDate) AS OrderYear
FROM AdventureWorks.Sales.SalesOrderDetail
WHERE YEAR(OrderDate)=2011 GROUP BY ProductID, YEAR(OrderDate) GO

Explanation/Reference:
<table>
<thead>
<tr>
<th>B. Name ProductName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socks Mountain Bike Socks,</td>
</tr>
<tr>
<td>Socks Racing Socks,</td>
</tr>
<tr>
<td>MSocks Racing Socks,</td>
</tr>
<tr>
<td>LVests Classic Vest,</td>
</tr>
<tr>
<td>SVests Classic Vest,</td>
</tr>
<tr>
<td>MVests Classic Vest,</td>
</tr>
<tr>
<td>LHelmets NULL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Name ProductName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socks Mountain Bike Socks,</td>
</tr>
<tr>
<td>Socks Racing Socks,</td>
</tr>
<tr>
<td>MSocks Racing Socks,</td>
</tr>
<tr>
<td>LVests Classic Vest,</td>
</tr>
<tr>
<td>SVests Classic Vest,</td>
</tr>
<tr>
<td>MVests Classic Vest,</td>
</tr>
<tr>
<td>LHelmets NULL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D. Name ProductName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socks Mountain Bike Socks,</td>
</tr>
<tr>
<td>Socks Racing Socks,</td>
</tr>
<tr>
<td>MSocks Racing Socks,</td>
</tr>
<tr>
<td>LVests Classic Vest,</td>
</tr>
<tr>
<td>SVests Classic Vest,</td>
</tr>
<tr>
<td>MVests Classic Vest,</td>
</tr>
<tr>
<td>LHelmets NULL</td>
</tr>
</tbody>
</table>

Correct Answer: B
Explanation/Reference:

Question 31
Which collation will be assigned?
You are working with a SQL Server 2008 instance that is configured to use the Icelandic_CS_AS collation. You create a database by using code that includes the following statements.

```
CREATE DATABASE InternationalDB COLLATE Japanese_CS_AS;
GO
USE InternationalDB;
GO
CREATE TABLE AppPermTable (PrimaryKey int PRIMARY KEY, AppID nchar );
```
You implement a temporary table named #AppTempTable that uses the following code.

```
USE InternationalDB;
GO
CREATE TABLE #AppTempTable (PrimaryKey int PRIMARY KEY, AppID nchar );
INSERT INTO #AppTempTable SELECT * FROM AppPermTable;
```
You need to identify the collation that will be assigned to #AppTempTable. Which collation will be assigned?

A. Icelandic_CS_AS
B. No collation
C. The collation selected by the Windows system locale of the server
D. Japanese_CS_AS

Correct Answer: A
Explanation/Reference:

Question 32
What should you do?
You administer a Microsoft SQL Server 2008 database that contains two tables named Products and Suppliers.
You want to implement referential integrity between the Products and Suppliers tables.
You want to create a new Foreign Key constraint on the Products table.
The new Foreign Key constraint must meet the following requirements:

- It must be created on the SupplierID column on the Products table to refer to the SupplierID column on the Suppliers table.
- It must prevent the deletion of rows from the Suppliers table whenever an attempt is made to delete a Supplier by using a SupplierID referenced by
Question 33
Which join clause should you use to complete the query?
You have a table named Employees. You want to identify the supervisor to which each employee reports.
You write the following query.
SELECT e.EmployeeName AS [EmployeeName], s.EmployeeName AS [SupervisorName] FROM Employees e
You need to ensure that the query returns a list of all employees and their respective supervisor.
Which join clause should you use to complete the query?
A. RIGHT JOIN Employees s ON e.ReportsTo = s.EmployeeId
B. INNER JOIN Employees s ON e.EmployeeId = s.EmployeeId
C. LEFT JOIN Employees s ON e.ReportsTo = s.EmployeeId
D. LEFT JOIN Employees s ON e.EmployeeId = s.EmployeeId
Correct Answer: C
Explanation/Reference:

Question 34
Which code segment should you use?
You have a table named Stores that has an XML column named OpenHours. This column contains the opening and closing times.
< hours dayofWeek="Monday" open="8:00" closed="18:00" />
< hours dayofWeek="Tuesday" open="8:00" closed="18:00" />
...
< hours dayofWeek="Saturday" open="8:00" closed="18:00" />
You need to write a query that returns a list of stores and their opening time for a specified day.
Which code segment should you use?
A. DECLARE @Day VARCHAR(10) = 'Tuesday'
 SELECT StoreName, OpenHours.value('/hours[1]','time')
 FROM Stores
B. DECLARE @Day VARCHAR(10) = 'Tuesday'
 SELECT StoreName, OpenHours.value('/hours[1]','time')
 FROM Stores
 WHERE OpenHours.exist('/hours[1]') = 1
C. DECLARE @Day VARCHAR(10) = 'Tuesday'
 SELECT StoreName, OpenHours.query('data(/hours[1])')
 FROM Stores
D. DECLARE @Day VARCHAR(10) = 'Tuesday'
 SELECT StoreName, OpenHours.value('/hours[1]','time')
 FROM Stores
 WHERE OpenHours.value('/hours[1]','varchar(20)') = @Day
Correct Answer: C
Explanation/Reference:

Question 35
Which Transact-SQL query should you use?
You administer a Microsoft SQL Server 2008 database that contains a table named dbo.SalesOrders. The table has the following definition:
CREATE TABLE [dbo].[SalesOrder](
[SalesOrderNumber] NVARCHAR(20) NOT NULL,
The SalesOrder table contains one million rows. You want to create a report that meets the following requirements:

- Only the states of the United States are ranked against each other based on the total number of orders received from each state.
- When two states have the same rank, the rank of the subsequent state is one plus the number of ranks that come before that row, as shown in the exhibit. (Click the Exhibit button.)

You need to execute a Transact-SQL query to generate the report. Which Transact-SQL query should you use?

Exhibit:

<table>
<thead>
<tr>
<th>Ranking</th>
<th>StateProvinceName</th>
<th>TotalOrders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>California</td>
<td>5465</td>
</tr>
<tr>
<td>2</td>
<td>Washington</td>
<td>2754</td>
</tr>
<tr>
<td>3</td>
<td>Oregon</td>
<td>1257</td>
</tr>
<tr>
<td>4</td>
<td>Illinois</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Ohio</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Florida</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Texas</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Georgia</td>
<td>4</td>
</tr>
</tbody>
</table>

A. SELECT RANK() OVER (ORDER BY StateProvinceName DESC) AS Ranking, StateProvinceName, TotalOrders
FROM
(SELECT StateProvinceName, count(*) AS TotalOrders
FROM dbo.SalesOrder
WHERE CountryName='United States'
GROUP BY StateProvinceName) AS
B. SELECT DENSE_RANK() OVER (ORDER BY StateProvinceName DESC) AS Ranking, StateProvinceName, TotalOrders
FROM
(SELECT StateProvinceName, count(*) AS TotalOrders
FROM dbo.SalesOrder
WHERE CountryName='United States'
GROUP BY StateProvinceName) AS
C. SELECT DENSE_RANK() OVER (ORDER BY TotalOrders DESC) AS Ranking, StateProvinceName, TotalOrders
FROM
(SELECT StateProvinceName, count(*) AS TotalOrders
FROM dbo.SalesOrder
WHERE CountryName='United States'
GROUP BY StateProvinceName) AS
D. SELECT RANK() OVER (ORDER BY TotalOrders DESC) AS Ranking, StateProvinceName, TotalOrders
FROM
(SELECT StateProvinceName, count(*) AS TotalOrders
FROM dbo.SalesOrder
WHERE CountryName='United States'
GROUP BY StateProvinceName) AS
E. SELECT RANK() OVER (PARTITION BY CountryName ORDER BY TotalOrders DESC) AS Ranking, StateProvinceName, TotalOrders
FROM
(SELECT CountryName, StateProvinceName, count(*) AS TotalOrders
FROM dbo.SalesOrder
GROUP BY CountryName,StateProvinceName) AS
F. SELECT DENSE_RANK() OVER (PARTITION BY CountryName ORDER BY TotalOrders DESC) AS Ranking, StateProvinceName, TotalOrders
FROM
(SELECT CountryName, StateProvinceName, count(*) AS TotalOrders
FROM dbo.SalesOrder
GROUP BY CountryName,StateProvinceName) AS
G. SELECT RANK() OVER (PARTITION BY CountryName ORDER BY TotalOrders DESC) AS Ranking, StateProvinceName, TotalOrders
FROM
(SELECT CountryName, StateProvinceName, count(*) AS TotalOrders
FROM dbo.SalesOrder
GROUP BY CountryName,StateProvinceName) AS
H. SELECT DENSE_RANK() OVER (PARTITION BY CountryName ORDER BY TotalOrders DESC) AS Ranking, StateProvinceName, TotalOrders
FROM
(SELECT CountryName, StateProvinceName, count(*) AS TotalOrders
FROM dbo.SalesOrder
WHERE CountryName='United States'
GROUP BY CountryName,StateProvinceName) AS

Correct Answer: DG

Explanation/Reference:

Question 36
Which Transact-SQL statement should you insert at line 07?
You have a table named Orders. You have been tasked to modify your company’s main database to remove all inactive order rows. You are developing a stored procedure that will enable you to delete these rows. You have written the following code segment to accomplish this task.

01 BEGIN TRY
02 DECLARE @RowCount INT = 1000
03 WHILE @RowCount = 1000
04 BEGIN
05 DELETE TOP (1000) FROM Orders WHERE Status = ‘Inactive’;
06 SET @RowCount = @@ROWCOUNT
07…
08 END
09 END TRY
10 BEGIN CATCH
11 PRINT ERROR_MESSAGE()
12 END CATCH

You need to insert a Transact-SQL statement that will notify you immediately after each batch of rows is deleted. Which Transact-SQL statement should you insert at line 07?

A. RAISERROR (‘Deleted %i rows’, 11, 1, @RowCount) WITH NOWAIT
B. RAISERROR (‘Deleted %i rows’, 16, 1, @RowCount)
C. RAISERROR (‘Deleted %i rows’, 6, 1, @RowCount)
D. RAISERROR (‘Deleted %i rows’, 10, 1, @RowCount) WITH NOWAIT

Correct Answer: D
Explanation/Reference:

Question 37
Which option should you use?
You have a database server that has four quad-core processors. This database server executes complex queries that are used to generate reports. You need to force a query to use only one processor core without affecting other queries. Which option should you use?
A. OPTION (MAXDOP 4)
B. OPTION (MAXDOP 0)
C. OPTION (MAXDOP 16)
D. OPTION (MAXDOP 1)

Correct Answer: D
Explanation/Reference:

Question 38
Which code segment should you use?
You need to implement a common table expression (CTE). Which code segment should you use?
A. SELECT Year, Region, Total
FROM (SELECT Year, Region, SUM(OrderTotal) AS Total
FROM Orders
GROUP BY Year, Region) AS [SalesByYear];
B. CREATE VIEW SalesByYear
AS
SELECT Year, Region, SUM(OrderTotal)
FROM Orders
GROUP BY Year, Region,
GO
SELECT Year, Region, Total FROM SalesByYear;
C. WITH SalesByYear (Year, Region, Total)
AS
(SELECT Year, Region, SUM(OrderTotal)
FROM Orders
GROUP BY Year, Region)
SELECT Year, Region, Total FROM SalesByYear;
D. SELECT DISTINCT Year, Region, (SELECT SUM(OrderTotal)
FROM Orders SalesByYear
WHERE Orders.Year = SalesByYear.YEAR
AND Orders.Region = SalesByYear.Region) AS [Total]
FROM Orders;

Correct Answer: C
Explanation/Reference:

Question 39
Which options should you set?
You have a single CLR assembly in your database. The assembly only references blessed assemblies from the Microsoft .NET Framework and does not access external resources. You need to deploy this assembly by using the minimum required permissions. You must ensure that your database remains as secure as possible.
Which options should you set?
A. PERMISSION_SET = SAFE TRUSTWORTHY OFF
B. PERMISSION_SET = SAFE TRUSTWORTHY ON
C. PERMISSION_SET = UNSAFE TRUSTWORTHY ON
D. PERMISSION_SET = EXTERNAL_ACCESS TRUSTWORTHY OFF

Correct Answer: A
Explanation/Reference:

Question 40
Which Transact-SQL code segments should you use?
You have a table named ProductCounts that contains 1000 products as well as the number of units that have been sold for each product.
You need to write a query that displays the top 5% of products that have been sold most frequently.
Which Transact-SQL code segments should you use?
A. WITH Percentages AS
 (SELECT *, NTILE(5) OVER (ORDER BY UnitsSold) AS groupingColumn
 FROM ProductCounts)
 SELECT *
 FROM Percentages
 WHERE groupingColumn = 1;
B. WITH Percentages AS
 (SELECT *, NTILE(20) OVER (ORDER BY UnitsSold) AS groupingColumn
 FROM ProductCounts)
 SELECT *
 FROM Percentages
 WHERE groupingColumn = 20;
C. WITH Percentages AS
 (SELECT *, NTILE(20) OVER (ORDER BY UnitsSold) AS groupingColumn
 FROM ProductCounts)
 SELECT *
 FROM Percentages
 WHERE groupingColumn = 1;
D. WITH Percentages AS
 (SELECT *, NTILE(5) OVER (ORDER BY UnitsSold) AS groupingColumn
 FROM ProductCounts)
 SELECT *
 FROM Percentages
 WHERE groupingColumn = 5;

Correct Answer: B
Explanation/Reference:

Question 41
Which code segment should you use?
You have two tables named MainTable and ArchiveTable.
You need to move data older than 30 days from MainTable into ArchiveTable.
Which code segment should you use?
A. INSERT INTO ArchiveTable
 SELECT *
 FROM MainTable
 WHERE RecordDate < DATEADD(D,-30,GETDATE())
B. DELETE FROM MainTable
 OUTPUT DELETED.* INTO ArchiveTable
 WHERE RecordDate < DATEADD(D,-30,GETDATE())
C. DELETE FROM MainTable
 OUTPUT deleted.*
 WHERE RecordDate < DATEADD(D,-30,GETDATE())
D. INSERT INTO ArchiveTable
 SELECT *
 FROM MainTable
 WHERE RecordDate < DATEADD(D,-30,GETDATE())
 DELETE FROM MainTable

Correct Answer: B
Explanation/Reference:

Question 42
Which query should you use?
Your database contains sales information for millions of orders. You need to identify the orders with the highest average unit price and an order total greater than 10,000.
The list should contain no more than 20 orders.
Which query should you use?
A. SELECT TOP (20) o.SalesOrderId,o.OrderDate,o.Total,SUM(od.QTY * od.UnitPrice) / SUM(od.Qty) AS [AvgUnitPrice]
Question 43
Which SQL query should you use?

Note: This question is part of a series of questions that use the same set of answer choices. Each answer choice may be used once, more than once, or not at all.

You are a developer for a Microsoft SQL Server 2008 R2 database instance used to support a customer service application. You create tables named complaint, customer, and product as follows:

CREATE TABLE [dbo].[complaint] ([ComplaintID] [int], [ProductID] [int], [CustomerID] [int], [ComplaintDate] [datetime]);
CREATE TABLE [dbo].[customer] ([CustomerID] [int], [CustomerName] [varchar](100), [Address] [varchar](200), [City] [varchar](100), [State] [varchar] (50), [ZipCode] [varchar](5));
CREATE TABLE [dbo].[product] ([ProductID] [int], [ProductName] [varchar](100), [SalePrice] [money], [ManufacturerName] [varchar](100));

You need to write a query to return all customer names and total number of complaints for customers who have made more than 10 complaints. Which SQL query should you use?

A. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
GROUP BY GROUPING SETS ((c.CustomerName), (p.ProductName), ());

B. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
GROUP BY c.CustomerName
HAVING AVG(p.SalePrice) >= 500

C. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
AND AVG(p.SalePrice) >= 500

D. SELECT c.CustomerName, COUNT(com.ComplaintID) AS complaints
FROM customer c
INNER JOIN complaint com ON c.CustomerID = com.CustomerID
GROUP BY c.CustomerName
HAVING COUNT(com.ComplaintID) > 10;

E. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY p.ProductName, ComplaintMonth;

F. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE(p.ProductName, DATEPART(mm, com.ComplaintDate));

G. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE(p.ProductName, DATEPART(mm, com.ComplaintDate));

H. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE(p.ProductName, DATEPART(mm, com.ComplaintDate));

I. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE(p.ProductName, DATEPART(mm, com.ComplaintDate));
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE;

Correct Answer: D
Explanation/Reference:

Question 44
Which SQL statement should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You administer a Microsoft SQL Server 2008 database for an inventory management system. The application contains a product table that has the following definition:
CREATE TABLE [Production].[Product](
[ProductID] [int] IDENTITY(1,1) NOT NULL,
[Name] [nvarchar](50) NOT NULL,
[ProductNumber] [nvarchar](25) NOT NULL,
[Color] [nvarchar](15) NULL,
[Class] [nchar](2) NULL,
[Style] [nchar](2) NULL,
[Active] [bit] NOT NULL,
[ModifiedDate] [datetime] NOT NULL,
CONSTRAINT [PK_Product_ProductID] PRIMARY KEY CLUSTERED ([ProductID] ASC) ON [PRIMARY]) ON [PRIMARY]
GO
You want to add a new field to the Product table to meet the following requirements:
• Allows user-specified information that will be added to records in the Product table.
• Supports the largest storage size needed for the field.
• Uses the smallest data type necessary to support the domain of values that will be entered by users.
You need to add a field named User_Data_1 to support only values that are 1 or 0.
Which SQL statement should you use?
A. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLDATETIME
B. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(11,6)
C. ALTER TABLE [Production].[Product] ADD [User_Data_1] TINYINT
D. ALTER TABLE [Production].[Product] ADD [User_Data_1] NVARCHAR(100)
E. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLMONEY
F. ALTER TABLE [Production].[Product] ADD [User_Data_1] NCHAR(100)
G. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATE
H. ALTER TABLE [Production].[Product] ADD [User_Data_1] VARCHAR(100)
I. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATETIME
J. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLINT
K. ALTER TABLE [Production].[Product] ADD [User_Data_1] INT
L. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(6,11)
M. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(5,6)
N. ALTER TABLE [Production].[Product] ADD [User_Data_1] MONEY
O. ALTER TABLE [Production].[Product] ADD [User_Data_1] MONE
P. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATETIME
Q. ALTER TABLE [Production].[Product] ADD [User_Data_1] BIGINT
R. ALTER TABLE [Production].[Product] ADD [User_Data_1] NVARCHAR(100)
S. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(5,6)
T. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(6,11)
U. ALTER TABLE [Production].[Product] ADD [User_Data_1] MONEY
V. ALTER TABLE [Production].[Product] ADD [User_Data_1] NVARCHAR(100)
W. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(5,6)
X. ALTER TABLE [Production].[Product] ADD [User_Data_1] MONEY
Y. ALTER TABLE [Production].[Product] ADD [User_Data_1] NVARCHAR(100)
Z. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(5,6)

Correct Answer: P
Explanation/Reference:

Question 45
Which Transact-SQL statement should you use?
You are responsible for a SQL Server database. You require the tables to be added or altered only on the first day of the month.
You need to ensure that if the tables are attempted to be modified or created on any other day, an error is received and the attempt is not successful.
Which Transact-SQL statement should you use?
A. CREATE TRIGGER TRG_TABLES_ON_FIRST ON DATABASE FOR CREATE_TABLE, ALTER_TABLE
AS
IF DATEPART(day,getdate())>1
BEGIN
RAISERROR('Must wait til next month.', 16, 1)
END
B. CREATE TRIGGER TRG_TABLES_ON_FIRST ON DATABASE FOR CREATE_TABLE AS
IF DATEPART(day,getdate())>1
BEGIN
RAISERROR('Must wait til next month.', 16, 1)
END
C. CREATE TRIGGER TRG_TABLES_ON_FIRST ON ALL SERVER FOR ALTER_DATABASE AS
IF DATEPART(day,getdate())>1
BEGIN
ROLLBACK
RAISERROR('Must wait til next month.', 16, 1)
END
D. CREATE TRIGGER TRG_TABLES_ON_FIRST ON DATABASE FOR CREATE_TABLE, ALTER_TABLE
AS
IF DATEPART(day, getdate()) > 1
BEGIN
ROLLBACK
RAISERROR ('Must wait til next month.', 16, 1)
END

Correct Answer: D
Explanation/Reference:

Question 46
What behavior should you expect?
You are tasked to analyze blocking behavior of the following query:
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
WITH
Customers AS (SELECT * FROM Customer),
SalesTotal AS (SELECT CustomerId, SUM(OrderTotal) AS AllOrderTotal FROM SalesOrder)
SELECT CustomerId, AllOrderTotal FROM SalesTotal WHERE AllOrderTotal > 10000.00;

You need to determine if other queries that are using the Customer table will be blocked by this query.
You also need to determine if this query will be blocked by other queries that are using the Customer table.
What behavior should you expect?
A. The other queries will not be blocked by this query. This query will not be blocked by the other queries.
B. The other queries will be blocked by this query. This query will not be blocked by the other queries.
C. The other queries will not be blocked by this query. This query will be blocked by the other queries.
D. The other queries will be blocked by this query. This query will be blocked by the other queries.

Correct Answer: A
Explanation/Reference:

Question 47
Which Transact-SQL statement should you use?
You administer a Microsoft SQL Server 2008 R2 database that has a table named Customer.
The table has the following definition:
CREATE TABLE Customer(
 CustomerID int NOT NULL PRIMARY KEY,
 FirstName varchar(255) NOT NULL,
 LastName varchar(255) NOT NULL,
 CustomerAddress varchar(1024))
The database also has a table named PreferredCustomerList. Data will be added to the PreferredCustomerList table regularly.
The PreferredCustomerList table has the following definition:
CREATE TABLE PreferredCustomerList (FirstName varchar(255) NOT NULL, LastName varchar(255) NOT NULL)
You need to create a view that returns all records and columns of the Customer table that are also present in the PreferredCustomerList table.
Which Transact-SQL statement should you use?
A. CREATE VIEW vw_ValidCustomer
 AS
 SELECT FirstName, LastName
 FROM Customer c
 EXCEPT
 SELECT FirstName, LastName
 FROM PreferredCustomerList
B. CREATE VIEW vw_ValidCustomer
 AS
 SELECT c.CustomerID, c.FirstName, c.LastName, c.CustomerAddress
 FROM Customer c
 INNER JOIN PreferredCustomerList cel ON c.FirstName = cel.FirstName AND c.LastName = cel.LastName
C. CREATE VIEW vw_ValidCustomer
 AS
 SELECT c.CustomerID, c.FirstName, c.LastName, c.CustomerAddress
 FROM Customer c
 LEFT OUTER JOIN PreferredCustomerList cel ON c.FirstName = cel.FirstName AND c.LastName = cel.LastName
 WHERE cel.FirstName IS NULL
D. CREATE VIEW vw_ValidCustomer
 AS
 SELECT c.CustomerID, c.FirstName, c.LastName, c.CustomerAddress
 FROM Customer c
 INNER JOIN PreferredCustomerList cel ON c.FirstName = cel.FirstName
 INNER JOIN PreferredCustomerList cel ON c.LastName = cel.LastName
E. CREATE VIEW vw_ValidCustomer
 AS
 SELECT c.CustomerID, c.FirstName, c.LastName, c.CustomerAddress
 FROM Customer c
 EXCEPT
 SELECT c.CustomerID, c.FirstName, c.LastName, c.CustomerAddress
 FROM Customer c
 INNER JOIN PreferredCustomerList cel ON c.FirstName = cel.FirstName AND c.LastName = cel.LastName
F. CREATE VIEW vw_ValidCustomer
AS
SELECT c.CustomerID,c.FirstName,c.LastName,c.CustomerAddress
FROM Customer c
INTERSECT
SELECT c.CustomerID,c.FirstName,c.LastName,c.CustomerAddress
FROM Customer c
INNER JOIN PreferredCustomerList cel ON c.Firstname = cel.FirstName AND c.LastName = cel.LastName
G. CREATE VIEW vw_ValidCustomer
AS
SELECT c.CustomerID,c.FirstName,c.LastName,c.CustomerAddress
FROM Customer c
LEFT OUTER JOIN PreferredCustomerList cel ON c.Firstname = cel.FirstName AND c.LastName = cel.LastName
WHERE cel.LastName IS NULL
H. CREATE VIEW vw_ValidCustomer
AS
SELECT CustomerID,FirstName,LastName,CustomerAddress
FROM Customer c
EXCEPT
SELECT CustomerID,FirstName,LastName,CustomerAddress
FROM PreferredCustomerList

Correct Answer: BF
Explanation/Reference:

Question 48
Which tool should you use?
You need to capture and record a workload for analysis by the Database Engine Tuning Advisor (DTA).
Which tool should you use?
A. Performance Monitor
B. SQL Server Profiler
C. DTA utility
D. Activity Monitor

Correct Answer: B
Explanation/Reference:

Question 49
Which clause should you use to remove the subscribers from the table?
You have a table named Subscribers. You receive an updated list of subscribers.
You need to remove subscribers that are no longer on the list.
Which clause should you use to remove the subscribers from the table?
A. WHEN NOT MATCHED BY TARGET
B. WHEN MATCHED
C. WHEN NOT MATCHED BY SOURCE
D. WHEN NOT MATCHED

Correct Answer: C
Explanation/Reference:

Question 50
Which SQL query should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You are a developer for a Microsoft SQL Server 2008 R2 database instance used to support a customer service application.
You create tables named complaint, customer, and product as follows:
CREATE TABLE [dbo].[complaint] ([ComplaintID] [int], [ProductID] [int], [CustomerID] [int], [ComplaintDate] [datetime]);
CREATE TABLE [dbo].[customer] ([CustomerID] [int], [CustomerName] [varchar](100), [Address] [varchar](200), [City] [varchar](100), [State] [varchar](50), [ZipCode] [varchar](5));
CREATE TABLE [dbo].[product] ([ProductID] [int], [ProductName] [varchar](100), [SalePrice] [money], [ManufacturerName] [varchar](100));
You need to write a query to sum the sales of all products that have complaints by the following entries:
• The product name
• The month the product had a complaint
• The product name and the month the product had a complaint
• The grand total of all sales
Which SQL query should you use?
A. SELECT c.CustomerName,COUNT(com.ComplaintID) AS Complaints
FROM customer c
INNER JOIN complaint com ON c.CustomerID = com.CustomerID
WHERE COUNT(com.ComplaintID) > 10
GROUP BY c.CustomerName;
B. SELECT p.ProductName,DATEPART(mm, com.ComplaintDate) ComplaintMonth,SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ComplaintID
GROUP BY ProductName, DATEPART(mm, com.ComplaintDate);
C. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY ProductName, ComplaintMonth;
D. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
GROUP BY GROUPING SETS ((c.CustomerName), (p.ProductName), ());
E. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
AND AVG(p.SalePrice) >= 500
F. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
GROUP BY c.CustomerName
HAVING AVG(p.SalePrice) >= 500
G. SELECT c.CustomerName, COUNT(com.ComplaintID) AS complaints
FROM customer c
INNER JOIN complaint com ON c.CustomerID = com.CustomerID
GROUP BY c.CustomerName
HAVING COUNT(com.ComplaintID) > 10;
H. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
AND AVG(p.SalePrice) >= 500
G. SELECT c.CustomerName, COUNT(com.ComplaintID) AS complaints
FROM customer c
INNER JOIN complaint com ON c.CustomerID = com.CustomerID
GROUP BY c.CustomerName
HAVING COUNT(com.ComplaintID) > 10;
H. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
AND AVG(p.SalePrice) >= 500
I. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE(p.ProductName, DATEPART(mm, com.ComplaintDate));
J. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE;

Correct Answer: I
Explanation/Reference:

Question 51
Which FOR XML statement should you use?
Your company’s database contains Customers and Orders tables. You have been tasked to write a SELECT statement that outputs customer and order data as a valid and well-formed XML document. You are required to mix attribute and element based XML within the document. You have determined that using the FOR XML AUTO clause will not be suitable. You need to identify the correct FOR XML clause to meet the requirement.
Which FOR XML statement should you use? (Each correct answer represents a complete solution. Choose two.)
A. FOR BROWSE
B. FOR XML RAW
C. FOR XML PATH
D. FOR XML EXPLICIT

Correct Answer: CD
Explanation/Reference:

Question 52
Which query should you use?
You have two tables named Customer and SalesOrder. You need to identify all customers that have not yet made any purchases and those that have only made orders with an OrderTotal less than 100.
Which query should you use?
A. SELECT *
FROM Customer
WHERE 100 > SOME (SELECT OrderTotal
FROM SalesOrder
WHERE Customer.CustomerID = SalesOrder.CustomerID)
B. SELECT *
FROM Customer
WHERE EXISTS (SELECT SalesOrder.CustomerID
FROM SalesOrder
WHERE Customer.CustomerID = SalesOrder.CustomerID
AND SalesOrder.OrderTotal <= 100)
C. SELECT *
FROM Customer
WHERE 100 > ALL (SELECT OrderTotal
FROM SalesOrder
WHERE Customer.CustomerID = SalesOrder.CustomerID)
Question 53
Which three Transact-SQL statements should you use?
You administer a Microsoft SQL Server 2008R2 database that hosts a customer relationship management (CRM) application. The application supports the following two types of customers as shown in the exhibit. (Click the Exhibit button.)
- Business customers who have shipments sent to their office locations
- Residential customers who have shipments sent to their home address
You need to generate a list of residential customers who live outside North America. Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and arrange them in the correct order.)
Exhibit:
Question 54
Which three Transact-SQL statements should you use?
You create a database named AdventureWorks. You want to create a new table to store customer reviews for all products within the database.
The table must meet the following requirements:
• Stores information for the Product ID, Customer ID, Rating, and Reviews columns.
• The Reviews column can contain NULL values.
• The Reviews column is optimized to store NULL values.
Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and arrange them in the correct order.)

Build List and Reorder:
Correct Answer: A

Explanation/Reference:

Question 55
Which transaction isolation level should you use?
You have a transaction that uses the repeatable read isolation level. This transaction causes frequent blocking problems.
You need to reduce blocking. You also need to avoid dirty reads and non-repeatable reads.
Which transaction isolation level should you use?
A. SNAPSHOT
B. SERIALIZABLE
C. READ UNCOMMITTED
D. READ COMMITTED

Correct Answer: A

Explanation/Reference:

Question 56
Which statement should you use?
You have a table named Orders. OrderID is defined as an IDENTITY(1,1). OrderDate has a default value of 1.
You need to write a query to insert a new order into the Orders table for CustomerID 45 with today’s date and a cost of 89.00.
Which statement should you use?
A. INSERT INTO Orders(OrderID, CustomerId, OrderDate, Cost) VALUES (1, 45, DEFAULT, 89.00);
B. INSERT INTO Orders(OrderID, CustomerId, OrderDate, Cost) VALUES (1, 45, CURRENT_TIMESTAMP, 89.00);
C. INSERT INTO Orders(CustomerId, OrderDate, Cost) VALUES (45, CURRENT_TIMESTAMP, 89.00);

Correct Answer: B

Explanation/Reference:
D. INSERT INTO Orders(CustomerId, OrderDate, Cost) VALUES (45, DEFAULT, 89.00);

Correct Answer: C
Explanation/Reference:

Question 57
Which code segment should you use?
A table named Shirts includes an XML column named SizeAndColors that contains the sizes and colors of each shirt, as shown in the following code segment.
<shirt size=""XS"" colors=""Red""/></shirt>
<shirt size=""S"" colors=""Red, Blue"" /></shirt>
<shirt size=""XL"" colors=""Blue, Green"" />
You need to return a list of shirt colors available in a specific size.
Which code segment should you use?
A. DECLARE @Size VARCHAR(10) = 'L'
SELECT ShirtStyleName,SizeAndColors.value('@size[1]', 'color')
FROM Shirts
WHERE SizeAndColors.exist('@size[@size=sql:variable("@Size")]=1') = 1
B. DECLARE @Size VARCHAR(10) = 'L'
SELECT ShirtStyleName,SizeAndColors.query('@data/@size=sql:variable("@Size")')
FROM Shirts
C. DECLARE @Size VARCHAR(10) = 'L'
SELECT ShirtStyleName,SizeAndColors.value('@size[1]','color')
FROM Shirts
D. DECLARE @Size VARCHAR(10) = 'L'
SELECT ShirtStyleName,SizeAndColors.value('@size[1]','varchar(20)') = @Size
FROM Shirts

Correct Answer: B
Explanation/Reference:

Question 58
Which query should you use?
You have the following XML document that contains Product information.
DECLARE @prodList xml = '<ProductList xmlns="urn:Wide_World_Importers/schemas/Products">
 <Product Name="Product1" Category="Food" Price="12.3" />
 <Product Name="Product2" Category="Drink" Price="1.2" />
 <Product Name="Product3" Category="Food" Price="5.1" />
 …</ProductList>时时时';
You need to return a list of products that contains the Product Name, Category, and Price of each product.
Which query should you use?
A. SELECT prod.value('.[1]','varchar(100)'),prod.value('.[1]','varchar(20)'),prod.value('.[1]','money')
FROM @prodList.nodes('/ProductList/Product') ProdList(prod);
B. SELECT prod.value('@Name','varchar(100)'),prod.value('@Category','varchar(20)'),prod.value('@Price','money')
FROM @prodList.nodes('/ProductList/Product') ProdList(prod);
C. WITH XMLNAMESPACES (DEFAULT "urn:Wide_World_Importers/schemas/Products")
SELECT prod.value('.[1]','varchar(100)'),prod.value('.[1]','varchar(20)'),prod.value('.[1]','money')
FROM @prodList.nodes('/ProductList/Product') ProdList(prod);
D. WITH XMLNAMESPACES (DEFAULT 'urn:Wide_World_Importers/schemas/Products' as o)
SELECT prod.value('Name[1]','varchar(100)'),prod.value('Category[1]','varchar(20)'),prod.value('Price[1]','money')
FROM @prodList.nodes('/ProductList/o:Product') ProdList(prod);

Correct Answer: C
Explanation/Reference:

Question 59
Which Transact-SQL statement should you use?
You are a database developer for your organization. You create an application that uses a Transact-SQL variable to store user input data. The database collation is case-insensitive. The variable is constructed as shown in the following statement:
DECLARE @content varchar(64)
SELECT @content = 'The Advanced Research Projects Agency Network (ARPANET), was the worlds first operational packet switching network and the core network of a set that came to compose the global Internet.'
You need to implement a keyword search that meets the following requirements:
• Searches for the existence of the word ARPANET within the user-entered content.
• If the search term is found, the statement must return its starting position, and 0 otherwise.
• Performs a case-sensitive search for the given search term.
Which Transact-SQL statement should you use?
A. SELECT CHARINDEX(UPPER'arpanet', @content, 1) GO
B. SELECT CHARINDEX('ARPANET', @content COLLATE Latin1_General_CS_AS) GO
C. SELECT CHARINDEX('arpanet', @content) GO
D. SELECT CHARINDEX('ARPANET', @content, COLLATE Latin1_General_CS_AS)
GO E. SELECT CHARINDEX(@content, 'ARPANET', COLLATE Latin1_General_CS_AS) GO F. SELECT CHARINDEX('ARPANET', @content COLLATE Latin1_General_CS_AS, 0) GO G. SELECT CHARINDEX(@content COLLATE Latin1_General_CS_AS, 'ARPANET', 0) GO H. SELECT CHARINDEX(@content, 'ARPANET') GO

Correct Answer: BF Explanation/Reference:

Question 60
Which Transact-SQL statement should you use?
You are required to modify a table named Sales.SalesOrder. The table has change tracking enabled on it.
You need to disable change tracking prior to modifying the Sales.SalesOrder table.
Which Transact-SQL statement should you use?
A. EXEC sys.sp_cdc_disable_db
B. ALTER TABLE Sales.SalesOrder DISABLE CHANGE_TRACKING
C. ALTER DATABASE Contoso SET CHANGE_TRACKING = OFF
D. EXEC _schema = N'Sales',@source_name =N'SalesOrder', @capture_instance = N'Sales_SalesOrder'
Correct Answer: B
Explanation/Reference:

Question 61
What should you do?
You want to delete a User-Defined Function (UDF) named ufnGetProductListPrice from the AdventureWorks2008R2 database.
You need to perform the following tasks before executing DROP FUNCTION on ufnGetProductListPrice:
• View a list of objects that depend on ufnGetProductListPrice.
• View a list of objects on which ufnGetProductListPrice depends.
What should you do? (To answer, select the appropriate option or options in the answer area.)
Exhibit:
A.
B.
C.
D. This is the Answer
Correct Answer: D
Explanation/Reference:

Question 62
Which format should you choose?
You are tasked with creating a workload that will be used by the Database Engine Tuning Advisor (DTA). You need to create a workload in an appropriate format.
Which format should you choose? (Each correct answer represents a complete solution. Choose three.)
A. XML File
B. Transact-SQL Script
C. SQL Server Event Log
D. SQL Server Transaction Log
E. SQL Server Profiler Trace File
F. Performance Counter Log File
Correct Answer: ABE
Question 63

Which Transact-SQL statement or statements should you use?

You administer a SQL Server 2008 instance. The instance contains a database table named `Sales.SalesOrderDetail`. The table has the following definition:

```sql
CREATE TABLE [Sales].[SalesOrderDetail](
    [SalesOrderID] [int] NOT NULL,
    [SalesOrderDetailID] [int] IDENTITY(1,1) NOT NULL,
    [CarrierTrackingNumber] [nvarchar](25) NULL,
    [OrderQty] [smallint] NOT NULL,
    [ProductID] [int] NOT NULL,
    [SpecialOfferID] [int] NOT NULL,
    [UnitPrice] [money] NOT NULL,
    [UnitPriceDiscount] [money] NOT NULL,
    [LineTotal] AS (isnull(([UnitPrice]*((1.0)-[UnitPriceDiscount]))* [OrderQty],(0.0))),
    [rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL,
    [ModifiedDate] [datetime] NOT NULL,
) WITH (DATA_COMPRESSION = ROW) ON [PRIMARY]
```

You need to enable row compression for the index. Which Transact-SQL statement or statements should you use?

A. `ALTER INDEX [IX_SalesOrderDetail_ProductID] ON [Sales].[SalesOrderDetail] REBUILD WITH (FILLFACTOR = 50)`

B. `ALTER INDEX [IX_SalesOrderDetail_ProductID] ON [Sales].[SalesOrderDetail] REBUILD WITH (DATA_COMPRESSION = ROW)`

C. `ALTER INDEX [IX_SalesOrderDetail_ProductID] ON [Sales].[SalesOrderDetail] REORGANIZE WITH (DATA_COMPRESSION = ROW)`

D. `ALTER INDEX [IX_SalesOrderDetail_ProductID] ON [Sales].[SalesOrderDetail] REORGANIZE WITH (DATA_COMPRESSION = ON)`

E. `ALTER INDEX [IX_SalesOrderDetail_ProductID] ON [Sales].[SalesOrderDetail] REBUILD WITH (ALLOW_ROW_LOCKS = ON, MAXDOP = 50)`

F. `CREATE NONCLUSTERED INDEX [IX_SalesOrderDetail_ProductID] ON [Sales].[SalesOrderDetail] ([ProductID] ASC) WITH (DATA_COMPRESSION = ROW, SORT_IN_TEMPDB = OFF, DROP_EXISTING= ON) ON [PRIMARY]`

G. `CREATE NONCLUSTERED INDEX [IX_SalesOrderDetail_ProductID] ON [Sales].[SalesOrderDetail] ([ProductID] ASC) WITH (DATA_COMPRESSION = ROW, SORT_IN_TEMPDB = ON, DROP_EXISTING = OFF) ON [PRIMARY]`

H. `SELECT 50 AS fill_factor
FROM sys.dm_db_index_operational_stats (DB_ID(), OBJECT_ID(N'Sales.SalesOrderDetail'), NULL, NULL) AS a JOIN sys.indexes AS b ON a.object_id = object_id AND a.index_id = b.index_id
WHERE name='IX_SalesOrderDetail_ProductID'
GO`

Correct Answer: BF

Explanation/Reference:

Question 64

Which Transact-SQL statement should you use?

You need to write a query that allows you to rank total sales for each salesperson into four groups, where the top 25 percent of results are in group 1, the next 25 percent are in group 2, the next 25 percent are in group 3, and the lowest 25 percent are in group 4. Which Transact-SQL statement should you use?

A. `NTILE(100)`

B. `NTILE(25)`

C. `NTILE(4)`

D. `NTILE(1)`

Correct Answer: C

Explanation/Reference:

Question 65

Which three Transact-SQL statements should you use?

You administer a Microsoft SQL Server 2008 database that includes a table named `Products`. The `Products` table has the following schema:

```sql
CREATE TABLE dbo.Products(
    ProductID nchar(4) NOT NULL,
    ProductName nvarchar(50) NULL,
    ProductDescription nvarchar(50) NULL,
)
```
UnitCost money NULL,
UnitPrice money NULL,
CONSTRAINT PK_Products PRIMARY KEY CLUSTERED (ProductID ASC))
GO
You create a User-Defined Function (UDF) in the same database. The UDF has the following schema:
CREATE FUNCTION dbo.CalculateProductProfit(@ProductID nchar(4))
RETURNS Money
WITH SCHEMABINDING
BEGIN
DECLARE @Profit Money;
SELECT @Profit = UnitPrice – UnitCost FROM dbo.Products WHERE ProductID = @ProductID;
RETURN @Profit;
END
You need to meet the following requirements:
• Ensure that the UnitPrice column does not accept NULL values.
• Use the CalculateProductProfit() UDF.
• Avoid accidental drop or change of the Product table.

Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and arrange them in the correct order.)

Correct Answer:
B. DROP FUNCTION CalculateProductProfit
D. ALTER TABLE Products ALTER COLUMN
UnitPrice Money NOT NULL
E. CREATE FUNCTION
dbo.CalculateProductProfit(@ProductID nchar(4))
RETURNS Money
WITH SCHEMABINDING
AS
BEGIN
DECLARE @Profit Money;
SELECT @Profit = UnitPrice – UnitCost FROM dbo.Products WHERE ProductID = @ProductID;
RETURN @Profit;
END

Explanation/Reference:
Question 66
Which code segment should you insert at line 3?
You have a table named Employee. You document your company’s organizational hierarchy by inserting the EmployeeID of each employee’s manager in the ReportsTo column.
You need to write a recursive query that produces a list of employees and their manager. The query must also include the employee’s level in the hierarchy.
You write the following code segment. (Line numbers are included for reference only.)
01 WITH EmployeeList (EmployeeID, FullName, ManagerName, Level)
02 AS (
04)
05 SELECT EmployeeID, FullName, ManagerName, Level
06 FROM EmployeeList;
Which code segment should you insert at line 3?
A. SELECT EmployeeID, FullName,’ AS [Reports To], 1 AS [Level]
FROM Employee
UNION ALL
SELECT emp.EmployeeID, emp.FullName, mgr.FullName, 1 + 1 AS [Level]
FROM Employee emp
LEFT JOIN Employee mgr ON emp.ReportsTo = mgr.EmployeeID
B. SELECT EmployeeID, FullName,’ AS [Reports To], 1 AS [Level]
FROM Employee
WHERE ReportsTo IS NULL
UNION ALL
SELECT emp.EmployeeID, emp.FullName, mgr.FullName, mgr.Level + 1
FROM EmployeeList mgr
JOIN Employee emp ON emp.ReportsTo = mgr.EmployeeID
C. SELECT EmployeeID, FullName,’ AS [Reports To], 1 AS [Level]
FROM Employee
UNION ALL
SELECT emp.EmployeeID, emp.FullName, mgr.FullName, mgr.Level + 1
FROM EmployeeList mgr
JOIN Employee emp ON emp.ReportsTo = mgr.EmployeeID
D. SELECT EmployeeID, FullName,’ AS [Reports To], 1 AS [Level]
FROM Employee
WHERE ReportsTo IS NULL
UNION ALL
SELECT emp.EmployeeID, emp.FullName, mgr.FullName, 1 + 1 AS [Level]
FROM Employee emp
JOIN Employee mgr ON emp.ReportsTo = mgr.EmployeeID
Correct Answer: B
Explanation/Reference:

Question 67
Which three actions should you perform in sequence?
You are a developer for a Microsoft SQL Server 2008 R2 database instance. You plan to add functionality to an existing application that uses the Microsoft SQL Server Profiler tool to capture trace information. You need to ensure that the following requirements are met.
• Users are able to use the new application functionality.
• Users are able to capture trace information and read saved trace files.
• Users are granted the minimum permissions to achieve these goals.

Which three actions should you perform in sequence? (To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.)

Correct Answer:

<table>
<thead>
<tr>
<th>Ordered List Title</th>
<th>Answer Choices Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Create a database role named traceusers</td>
<td>A. Create a database role named traceusers</td>
</tr>
<tr>
<td>B. Add each user of the application to the sysadmin fixed server role</td>
<td>B. Add each user of the application to the sysadmin fixed server role</td>
</tr>
<tr>
<td>C. Add each user of the application to the traceusers database role</td>
<td>C. Add each user of the application to the traceusers database role</td>
</tr>
<tr>
<td>D. Grant the ALTER TRACE permissions to the traceusers database role</td>
<td>D. Grant the ALTER TRACE permissions to the traceusers database role</td>
</tr>
<tr>
<td>E. Grant the CONNECT permission to the traceusers database role</td>
<td>E. Grant the CONNECT permission to the traceusers database role</td>
</tr>
<tr>
<td>F. Create a server role named traceusers</td>
<td>F. Create a server role named traceusers</td>
</tr>
</tbody>
</table>

Correct Answer:
Question 68
Which Transact-SQL statements should you use?
You are a database developer working on an application hosted on Microsoft SQL Server 2008 R2.
The application regularly imports employee data from XML files.
These files are bulk-loaded into the CompanyDoc column of the CompanyXML table.
The table has the following definition:
```sql
CREATE TABLE CompanyXML(
   CompanyXMLID int IDENTITY PRIMARY KEY NOT NULL,
   CompanyDoc xml NOT NULL)
```
One of the XML files loaded into this table has the following code fragment.
```xml
< Company><Employee Name = "Michaeline" Department = "Finance"/> <Employee Name = "Chad" Department = "Facilities"/> ...
< Employee Name = "Shelly" Department = "Human Resources"/></Company>
```
You need to be able to return the data as shown in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael</td>
<td>Finance</td>
</tr>
<tr>
<td>John</td>
<td>Facilities</td>
</tr>
<tr>
<td>David</td>
<td>Human Resources</td>
</tr>
</tbody>
</table>
Which Transact-SQL statements should you use?
Exhibit:

A. SELECT Name = Company.Employee.query('@Name','varchar(20)'), Department = Company.Employee.query('@Department','varchar(20)') FROM CompanyXML c CROSS APPLY CompanyDoc.nodes('/Company/Employee') Company(Employee)
B. DECLARE @xmlid int
 DECLARE cur_xml CURSOR FAST_FORWARD FOR
 SELECT CompanyXMLID FROM CompanyXML
 OPEN cur_xml
 FETCH NEXT FROM cur_xml INTO @xmlid
 WHILE @@FETCH_STATUS = 0
 BEGIN
 SELECT Name = Company.Employee.value('@Name','varchar(20)'), Department = Company.Employee.value('@Department','varchar(20)') FROM CompanyXML WHERE CompanyXMLID = @xmlid
 FETCH NEXT FROM cur_xml INTO @xmlid
 END
 CLOSE cur_xml DEALLOCATE cur_xml
C. SELECT Name = Company.Employee.value('@Name','varchar(20)'), Department = Company.Employee.value('@Department','varchar(20)') FROM CompanyXML c CROSS APPLY CompanyDoc.nodes('/Company/Employee') Company(Employee)
D. DECLARE @xml xml
 DECLARE @results table (Name varchar(20), Department varchar(20))
 DECLARE cur_xml CURSOR FAST_FORWARD FOR
 SELECT CompanyDoc FROM CompanyXML
 OPEN cur_xml
 FETCH NEXT FROM cur_xml INTO @xml
 WHILE @@FETCH_STATUS = 0
 BEGIN
 INSERT @results
 SELECT Name = Company.Employee.query('@Name','varchar(20)'), Department = Company.Employee.query('@Department','varchar(20)') FROM @xml.nodes('/Company/Employee') Company(Employee)
 FETCH NEXT FROM cur_xml INTO @xml
 END
 CLOSE cur_xml DEALLOCATE cur_xml
 SELECT * FROM @results
E. DECLARE @xmlid int
 DECLARE cur_xml CURSOR FAST_FORWARD FOR
 SELECT CompanyXMLID FROM CompanyXML
 OPEN cur_xml
 FETCH NEXT FROM cur_xml INTO @xmlid
 WHILE @@FETCH_STATUS = 0
 BEGIN
 SELECT Name = Company.Employee.query('@Name','varchar(20)'), Department = Company.Employee.query('@Department','varchar(20)')
FROM CompanyXML
WHERE CompanyXMLID = @xmlid
FETCH NEXT FROM cur_xml INTO @xmlid
END
CLOSE cur_xml
DEALLOCATE cur_xml
F. DECLARE @xml xml
DECLARE @results table (Name varchar(20), Department varchar(20))
DECLARE cur_xml CURSOR FAST_FORWARD
FOR
SELECT CompanyDoc FROM CompanyXML
OPEN cur_xml
FETCH NEXT FROM cur_xml INTO @xml
WHILE @@FETCH_STATUS = 0
BEGIN
INSERT @results
SELECT Name = @xml.value('/Company[1]/Employee[1]/@Name', 'varchar(20)'), Department = @xml.value('/Company[1]/Employee[1]/@Department', 'varchar(20)')
FETCH NEXT FROM cur_xml INTO @xml
END
CLOSE cur_xml
DEALLOCATE cur_xml
SELECT * FROM @results

G. DECLARE @xml xml
DECLARE @results table (Name varchar(20), Department varchar(20))
DECLARE cur_xml CURSOR FAST_FORWARD
FOR
SELECT CompanyDoc FROM CompanyXML
OPEN cur_xml
FETCH NEXT FROM cur_xml INTO @xml
WHILE @@FETCH_STATUS = 0
BEGIN
INSERT @results
SELECT Name = @xml.value('/Employee[1]/@Name', 'varchar(20)'), Department = @xml.value('/Employee[1]/@Department', 'varchar(20)')
FETCH NEXT FROM cur_xml INTO @xml
END
CLOSE cur_xml
DEALLOCATE cur_xml
SELECT * FROM @results

H. DECLARE @xml xml
DECLARE @results table (Name varchar(20), Department varchar(20))
DECLARE cur_xml CURSOR FAST_FORWARD
FOR
SELECT CompanyDoc FROM CompanyXML
OPEN cur_xml
FETCH NEXT FROM cur_xml INTO @xml
WHILE @@FETCH_STATUS = 0
BEGIN
INSERT @results
SELECT Name = Company.Employee.value('@Name','varchar(20)'), Department = Company.Employee.value('@Department','varchar(20)')
FROM @xml.nodes('/Company/Employee') Company(Employee)
FETCH NEXT FROM cur_xml INTO @xml
END
CLOSE cur_xml
DEALLOCATE cur_xml
SELECT * FROM @results

Correct Answer: CH
Explanation/Reference:

Question 69
Which function should you use?
You have implemented change tracking on a table named Sales.SalesOrder. You need to determine all columns that have changed since the minimum valid version.
Which function should you use?
A. CHANGETABLE with the VERSION argument
B. CHANGETABLE with the CHANGES argument
C. CHANGE_TRACKING_CURRENT_VERSION
D. CHANGE_TRACKING_IS_COLUMN_IN_MASK

Correct Answer: B
Explanation/Reference:

Question 70
Which Transact-SQL statement should you use?
You administer a Microsoft SQL Server 2008 database that contains tables named Sales.Customer and Sales.SalesOrder. A diagram of the tables is
shown in the exhibit. (Click the Exhibit button.)

You need to execute a query to update the value of the CustomerValue field to HV when a customer has more than 5 orders for a total sales amount of more than 5,000 U.S. dollars.

Which Transact-SQL statement should you use?

Exhibit:

A. UPDATE Sales.Customer
 SET CustomerValue = 'HV'
 FROM Sales.Customer
 WHERE SalesAmount > 5000
 AND CustomerID IN (SELECT c.CustomerID
 FROM Sales.Customer c
 INNER JOIN Sales.SalesOrder o ON o.CustomerID=c.CustomerID
 GROUP BY c.CustomerID
 HAVING COUNT(*) > 5)

B. UPDATE Sales.Customer
 SET CustomerValue = 'HV'
 FROM Sales.Customer
 WHERE CustomerID IN (SELECT c.CustomerID
 FROM Sales.Customer c
 INNER JOIN Sales.SalesOrder o ON o.CustomerID=c.CustomerID
 GROUP BY c.CustomerID
 HAVING COUNT(*) > 5 AND SUM(SalesAmount) > 5000)

C. UPDATE c
 SET CustomerValue = 'HV'
 FROM Sales.SalesOrder o
 INNER JOIN Sales.Customer c ON c.CustomerID=o.CustomerID
 GROUP BY c.CustomerID
 HAVING COUNT(*) > 5 AND SUM(SalesAmount) > 5000

D. UPDATE c
 SET CustomerValue = 'HV'
 FROM Sales.SalesOrder o
 INNER JOIN Sales.Customer c ON c.CustomerID=o.CustomerID
 WHERE SalesAmount > 5000
 GROUP BY c.CustomerID
 HAVING COUNT(*) > 5

E. UPDATE u
 SET CustomerValue = 'HV'
 FROM Sales.Customer u
 WHERE EXISTS (SELECT c.CustomerID
 FROM Sales.Customer c
 INNER JOIN Sales.SalesOrder o ON o.CustomerID=c.CustomerID
 WHERE c.CustomerID=u.CustomerID
 GROUP BY c.CustomerID
 HAVING COUNT(*) > 5 AND SUM(SalesAmount) > 5000)

F. UPDATE u
 SET CustomerValue = 'HV'
 FROM Sales.Customer u
 WHERE SalesAmount > 5000
 AND EXISTS (SELECT c.CustomerID
 FROM Sales.Customer c
 INNER JOIN Sales.SalesOrder o ON o.CustomerID=c.CustomerID
 WHERE c.CustomerID=u.CustomerID
 GROUP BY c.CustomerID
 HAVING COUNT(*) > 5)

G. UPDATE Sales.Customer
 SET CustomerValue = 'HV'
 FROM Sales.Customer
 WHERE CustomerID IN (SELECT c.CustomerID
 FROM Sales.Customer c
 INNER JOIN Sales.SalesOrder o ON o.CustomerID=c.CustomerID
 GROUP BY c.CustomerID
 HAVING COUNT(*) > 5 AND SUM(SalesAmount) > 5000)

H. UPDATE Sales.Customer
 SET CustomerValue = 'HV'
 FROM Sales.SalesOrder o
 INNER JOIN Sales.Customer c ON c.CustomerID=o.CustomerID
 WHERE SalesAmount > 5000
 GROUP BY c.CustomerID
 HAVING COUNT(*) > 5

Correct Answer: BE

Explanation/Reference:
Question 71
Which SQL query should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You are a developer for a Microsoft SQL Server 2008 R2 database instance used to support a customer service application. You create tables named complaint, customer, and product as follows:
CREATE TABLE [dbo].[complaint] ([ComplaintID] [int], [ProductID] [int], [CustomerID] [int], [ComplaintDate] [datetime]);
CREATE TABLE [dbo].[customer] ([CustomerID] [int], [CustomerName] [varchar](100), [Address] [varchar](200), [City] [varchar](100), [State] [varchar](50), [ZipCode] [varchar](5));
CREATE TABLE [dbo].[product] ([ProductID] [int], [ProductName] [varchar](100), [SalePrice] [money], [ManufacturerName] [varchar](100));
You need to write a query to sum the sales made to each customer who has made a complaint by the following entries:
• Each customer name
• Each product name
• The grand total of all sales
Which SQL query should you use?
A. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
GROUP BY GROUPING SETS ((c.CustomerName, p.ProductName), ());
B. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE(p.ProductName, DATEPART(mm, com.ComplaintDate));
C. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
AND AVG(p.SalePrice) >= 500
D. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE;
E. SELECT c.CustomerName, COUNT(com.ComplaintID) AS complaints
FROM customer c
WHERE COUNT(com.ComplaintID) > 10;
F. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY p.ProductName, DATEPART(mm, com.ComplaintDate), SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY p.ProductName, DATEPART(mm, com.ComplaintDate), SUM(p.SalePrice) AS Sales;
G. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
AND AVG(p.SalePrice) >= 500
H. SELECT c.CustomerName, COUNT(com.ComplaintID) AS Complaints
FROM customer c
WHERE COUNT(com.ComplaintID) > 10;
I. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY p.ProductName, ComplaintMonth;
J. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
GROUP BY GROUPING SETS ((c.CustomerName), (p.ProductName), ());
Correct Answer: J
Explanation/Reference:

Question 72
Which data types should you use?
You are a developer for a Microsoft SQL Server 2008 R2 database instance that hosts an application. You are designing some new tables. You need to choose the most appropriate data types.
Which data types should you use? (To answer, drag the appropriate data type to the correct data in the answer area. Each data type may be used once, more than once, or not at all. Each data may be used once or not at all. Additionally, you may need to drag the split bar between panes or scroll to view content.)

1. XML
Question 73
Which SQL statement should you use?

Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You administer a Microsoft SQL Server 2008 database for an inventory management system. The application contains a product table that has the following definition:

```
CREATE TABLE [Production].[Product](
    [ProductID] [int] IDENTITY(1,1) NOT NULL,
    [Name] [nvarchar](50) NOT NULL,
    [ProductNumber] [nvarchar](25) NOT NULL,
    [Color] [nvarchar](15) NULL,
    [Class] [nchar](2) NULL,
    [Style] [nchar](2) NULL,
    [Active] [bit] NOT NULL,
    [ModifiedDate] [datetime] NOT NULL,
    CONSTRAINT [PK_Product_ProductID] PRIMARY KEY CLUSTERED ([ProductID] ASC) ON [PRIMARY]) ON [PRIMARY]
```

You want to add a new field to the Product table to meet the following requirements:
• Allows user-specified information that will be added to records in the Product table.
• Supports the largest storage size needed for the field.
• Uses the smallest data type necessary to support the domain of values that will be entered by users.

You need to add a field named User_Data_1 to support decimal values between 0 and 10,000 that have up to six decimal points.

Which SQL statement should you use?

A. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATETIME2
B. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLMONEY
C. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(11,6)
D. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATETIME
E. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(6,11)
F. ALTER TABLE [Production].[Product] ADD [User_Data_1] BIGINT
G. ALTER TABLE [Production].[Product] ADD [User_Data_1] TINYINT
H. ALTER TABLE [Production].[Product] ADD [User_Data_1] CHAR(100)
I. ALTER TABLE [Production].[Product] ADD [User_Data_1] NVARCHAR(100)
J. ALTER TABLE [Production].[Product] ADD [User_Data_1] BIT
K. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLINT
L. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLDATETIME
M. ALTER TABLE [Production].[Product] ADD [User_Data_1] VARCHAR(100)
N. ALTER TABLE [Production].[Product] ADD [User_Data_1] INT
O. ALTER TABLE [Production].[Product] ADD [User_Data_1] NCHAR(100)
P. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(5,6)
Q. ALTER TABLE [Production].[Product] ADD [User_Data_1] MONEY
R. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLDATETIME

Correct Answer: C
Explanation/Reference:
You have a database that uses stored procedures to perform INSERT, UPDATE, DELETE, and SELECT statements.
You are tasked with providing a recommendation of indexes to be created and dropped from the database.
You need to select the appropriate method to accomplish the task. Which method should you use?

A. SQL Server Profiler
B. Database Engine Tuning Advisor
C. Index Usage DMVs
D. Missing Index DMVs

Question 74
Which method should you use?

You have a database that uses stored procedures to perform INSERT, UPDATE, DELETE, and SELECT statements.
You are tasked with providing a recommendation of indexes to be created and dropped from the database. You need to select the appropriate method to accomplish the task. Which method should you use?
A. SQL Server Profiler
B. Database Engine Tuning Advisor
C. Index Usage DMVs
D. Missing Index DMVs

Correct Answer: B
Explanation/Reference:

Question 75
What should you do?
You have an application that is used by international clients. All clients connect by using Windows Authentication. You need to ensure that system and user-defined error messages are displayed in the localized language for the clients.
What should you do? (Each correct answer represents part of the solution. Choose two.)
A. Use @@@LANGUAGE function
B. Use default language for each login
C. Use @lang parameter of sp_addmessage
D. Use the "set language" option of sp_configure

Correct Answer: BC
Explanation/Reference:

Question 76
What should you do?
You have a third-party application that inserts data directly into a table. You add two new columns to the table. These columns cannot accept NULL values and cannot use default constraints. You need to ensure that the new columns do not break the third-party application.
What should you do?
A. Create an INSTEAD OF INSERT trigger.
B. Create a stored procedure.
C. Create a DDL trigger.
D. Create an AFTER INSERT trigger

Correct Answer: A
Explanation/Reference:

Question 77
Which Transact-SQL statement should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You administer a Microsoft SQL Server 2008 database named AdventureWorks that contains a table named Production.Product. The table contains a primary key named PK_Product_ProductID and a non-clustered index named AK_Product_ProductNumber. Both indexes have been created on a single primary partition.
The table has the following definition:
CREATE TABLE [Production].[Product](
 [ProductID] [int] IDENTITY(1,1) NOT NULL,
 [Name] [nvarchar](50) NOT NULL,
 [ProductNumber] [nvarchar](25) NOT NULL,
 [Color] [nvarchar](15) NULL,
 [Class] [nchar](2) NULL, [Style]
 [nchar](2) NULL, [ModifiedDate]
 [datetime] NOT NULL,
 CONSTRAINT [PK_Product_ProductID] PRIMARY KEY CLUSTERED ([ProductID] ASC) ON [PRIMARY]) ON [PRIMARY]
GO
The table contains 1 million rows. You want to ensure that data retrieval takes the minimum amount of time when the queries executed against the Production.Product table are ordered by product number or filtered by class. You need to refresh statistics on the Production.Product table.
Which Transact-SQL statement should you use?
A. ALTER INDEX AK_Product_ProductNumber ON Production.Product REORGANIZE
B. SELECT * FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID(N'Production.Product'),NULL,NULL, NULL)
C. ALTER DATABASE [AdventureWorks] SET AUTO_UPDATE_STATISTICS ON
D. UPDATE INDEX AK_Product_ProductNumber ON Production.Product SET (STATISTICS_NORECOMPUTE = ON)
E. ALTER INDEX AK_Product_ProductNumber ON Production.Product REBUILD Partition = 1
F. SELECT * FROM sys.dm_db_index_operational_stats (DB_ID(), OBJECT_ID(N'Production.Product'),NULL,NULL) G. SELECT * FROM sys.indexes where name=N'Production.Product'
H. CREATE STATISTICS ProductClass_Stats ON Production.Product (Name, ProductNumber,Class) WHERE Class <> null
I. EXEC sys.sp_configure 'index create memory', 1
J. SELECT * FROM STATS WHERE name='AK_Product_ProductNumber'
K. ALTER INDEX AK_Product_ProductNumber ON Production.Product REBUILD
L. UPDATE STATISTICS Production.Product
M. ALTER STATISTICS Production.Product
N. DBCC SHOW_STATISTICS (Production.Product’, AK_Product_ProductNumber)
O. SELECT * FROM SYS.STATS WHERE name='AK_Product_ProductNumber'
P. CREATE STATS ProductClass_Stats ON Production.Product (Name, ProductNumber, Class) WHERE Class is not null WITH SAMPLE 100 PERCENT
Q. CREATE STATISTICS ProductClass_Stats ON Production.Product (Name, ProductNumber, Class) WHERE Class is not null

Correct Answer: L
Explanation/Reference:

Question 78
Which list of products should the query return?
You have two tables named dbo.CurrentProducts and dbo.ArchiveProducts. You have the following query:
SELECT ProductID, Name FROM dbo.CurrentProducts
UNION ALL
SELECT ProductID, Name FROM dbo.ArchiveProducts;
You need to predict the list of products that the query will produce.
Which list of products should the query return?
A. Products that appear in dbo.CurrentProducts or dbo.ArchiveProducts but not in both.
B. Products that appear in dbo.CurrentProducts or dbo.ArchiveProducts. Products that appear in both tables are listed multiple times.
C. Products that have a matching ProductID and Name in dbo.CurrentProducts or dbo.ArchiveProducts.
D. Products that appear in dbo.CurrentProducts or dbo.ArchiveProducts. Products that appear in both tables are listed only once.

Correct Answer: B
Explanation/Reference:

Question 79
Which products will be inserted?
You need to identify which products will be inserted when you execute the following code block:
BEGIN TRANSACTION
INSERT INTO Product (ProductName) VALUES ('food')
BEGIN TRANSACTION
INSERT INTO Product (ProductName) VALUES ('beverage')
COMMIT TRANSACTION
ROLLBACK TRANSACTION
Which products will be inserted?
A. None
B. Beverage
C. Food and beverage
D. Food

Correct Answer: A
Explanation/Reference:

Question 80
Which Transact-SQL statement should you use?
You administer a Microsoft SQL Server database named AdventureWorks2008R2. The database has a table that has the following definition:
CREATE TABLE Production.Location
 (Name nvarchar(100) NOT NULL PRIMARY KEY,
 StartDate datetime2 NOT NULL CHECK (StartDate >= '2011-01-01'))
You plan to implement custom error handling for INSERT commands. The error number for a duplicate key is 2627. The error number for a NULL violation is 515.
You need to ensure that an INSERT statement meets the following requirements:
• If a duplicate row is detected during insertion, no error message must be raised.
• For NULL errors, the prefix "NULL:" must be added to the message; all others errors must begin with "OTHER:.".
• Return all errors as error number 50000.
Which Transact-SQL statement should you use?
A. INSERT Production.Location (Name,StartDate) VALUES ('Paint','2011-10-18')
 IF @error = 515 RAISERROR ('NULL:' + Error_Message(),16,1)
B. DECLARE @msg nvarchar(2000)
 INSERT Production.Location (Name,StartDate) VALUES ('Paint','2011-10-18')
 IF @error = 515 BEGIN
 SET @msg = 'NULL:' + Error_Message()
 RAISERROR (@msg,16,1)
 ELSE BEGIN
 SET @msg = 'OTHER:' + Error_Message()
 RAISERROR (@msg,16,1)
 END

Correct Answer: B
Explanation/Reference:
C. BEGIN TRY
INSERT Production.Location (Name,StartDate) VALUES ('Paint','2011-10-10')
END TRY
BEGIN CATCH
IF ERROR_NUMBER() <> 2627
BEGIN
DECLARE @msg nvarchar(2000)
SET @msg = case ERROR_NUMBER() WHEN 515 THEN 'NULL:' ELSE 'OTHER:' END + ERROR_MESSAGE()
RAISERROR (@msg,16,1)
END
END CATCH
D. BEGIN TRY
INSERT Production.Location (Name,StartDate) VALUES ('Paint','2011-10-10')
END TRY
BEGIN CATCH
DECLARE @msg nvarchar(2000)
SET @msg = case ERROR_NUMBER() WHEN 515 THEN 'NULL:' ELSE 'OTHER:' END + ERROR_MESSAGE()
RAISERROR (@msg,16,1)
END CATCH
E. BEGIN TRY
INSERT Production.Location (Name,StartDate) VALUES ('Paint','2011-10-10')
END TRY
BEGIN CATCH
DECLARE @msg nvarchar(2000)
SET @msg = case ERROR_NUMBER() WHEN 515 THEN 'NULL:' ELSE 'OTHER:' END + ERROR_MESSAGE()
RAISERROR (@msg,16,1)
END CATCH
F. BEGIN TRY
INSERT Production.Location (Name,StartDate) VALUES ('Paint','2001-10-10')
END TRY
BEGIN CATCH
IF ERROR_NUMBER() <> 2627
BEGIN
DECLARE @msg nvarchar(2000)
SET @msg = case ERROR_NUMBER() WHEN 515 THEN 'NULL:' ELSE 'OTHER:' END + ERROR_MESSAGE()
RAISERROR 50010 @msg
END
END CATCH
G. BEGIN TRY
INSERT Production.Location (Name,StartDate) VALUES ('Paint','2011-10-10')
WHERE NOT EXISTS (SELECT * FROM Production.Location as L WHERE L.Name = 'Paint')
END TRY
BEGIN CATCH
DECLARE @msg nvarchar(2000)
SET @msg = case ERROR_NUMBER() WHEN 515 THEN 'NULL:' ELSE 'OTHER:' END + ERROR_MESSAGE()
RAISERROR (@msg,16,1)
END CATCH
H. BEGIN TRY
INSERT Production.Location (Name,StartDate) VALUES ('Paint','2011-10-10')
END TRY
BEGIN CATCH
IF ERROR_NUMBER() = 2627
BEGIN
DELETE FROM Production.Location WHERE Name = 'Paint'
INSERT Production.Location (Name,StartDate) VALUES ('Paint','2011-10-10')
END
ELSE
BEGIN
DECLARE @msg nvarchar(2000)
SET @msg = case ERROR_NUMBER() WHEN 515 THEN 'NULL:' ELSE 'OTHER:' END + ERROR_MESSAGE()
RAISERROR (@msg,16,1)
END
END CATCH
Correct Answer: CG

Question 81
Which Transact-SQL query should you use?
You are the database administrator for an order management system. The database has the following two schemas:
•The dbo schema that is used by the main data processing group
•A Reporting schema that is used by the reporting group
The application contains a product table that has the following definition:
CREATE TABLE dbo.Product(ProductID INT, ProductName VARCHAR(100), SalePrice MONEY, ManufacturerName VARCHAR(150));
The application contains an order table that has the following definition:
CREATE TABLE dbo.[Order](OrderID INT, ProductID INT, CustomerID INT, OrderDate DATETIME2);
The application also contains a customer table that has the following definition:
CREATE TABLE dbo.Customer(CustomerID INT, CustomerName VARCHAR(100), [Address] VARCHAR(200), City VARCHAR(100), [State] VARCHAR(50), ZipCode VARCHAR(5));
You want to load a subset of data from the product and order tables in the dbo schema to a new ProductOrderHistory table in the Reporting schema. You need to ensure that the table meets the following requirements:
• Includes rows for every product that has been manufactured by "Contoso".
• Includes rows for every product that was ordered from March 1, 2011 to May 31, 2011.
The Reporting.ProductOrderHistory columns have the following types:
CustomerName VARCHAR(100)
ProductName VARCHAR(100)
SalePrice MONEY
ManufacturerName VARCHAR(150)
ProductOrderDate DATETIME
Which Transact-SQL query should you use?
A. SELECT c.CustomerName, p.ProductName, p.SalePrice, p.ManufacturerName, CAST(o.OrderDate as datetime) as ProductOrderDate INTO Reporting.ProductOrderHistory FROM dbo.product p
LEFT JOIN (dbo.[order] o
INNER JOIN dbo.customer c ON o.CustomerID = c.CustomerID) ON p.ProductID = o.ProductID
WHERE p.ManufacturerName = 'Contoso'
OR (o.OrderDate >= '20110301' AND o.OrderDate < '20110601')
INNER JOIN dbo.[order] o ON p.ProductID = o.ProductID
INNER JOIN dbo.customer c ON o.CustomerID = c.CustomerID
WHERE p.ManufacturerName = '%Contoso%'
OR (o.OrderDate >= '20110301' AND o.OrderDate < '20110601')
C. SELECT c.CustomerName, p.ProductName, p.SalePrice, p.ManufacturerName, CAST(o.OrderDate as datetime) as ProductOrderDate INTO Reporting.ProductOrderHistory FROM dbo.product p
LEFT JOIN (dbo.[order] o
INNER JOIN dbo.customer c ON o.CustomerID = c.CustomerID) ON p.ProductID = o.ProductID
WHERE p.ManufacturerName = 'Contoso'
OR o.OrderDate BETWEEN '20110301' AND '20110531';
D. SELECT c.CustomerName, p.ProductName, p.SalePrice, p.ManufacturerName, CAST(o.OrderDate as datetime) as ProductOrderDate INTO Reporting.ProductOrderHistory FROM dbo.product p
LEFT JOIN dbo.[order] o ON p.ProductID = o.ProductID
WHERE p.ManufacturerName LIKE '%contoso%'
OR o.OrderDate >= '20110301'
AND o.OrderDate < '20110601'
E. SELECT c.CustomerName, p.ProductName, p.SalePrice, p.ManufacturerName, CAST(o.OrderDate as datetime) as ProductOrderDate INTO TABLE reporting.ProductOrderHistory FROM dbo.product p
LEFT JOIN dbo.[order] o ON p.ProductID = o.ProductID
WHERE p.ManufacturerName LIKE '%contoso%'
OR o.OrderDate BETWEEN '20110301' AND '20110531'
F. SELECT c.CustomerName, p.ProductName, p.SalePrice, p.ManufacturerName, CAST(o.OrderDate as datetime) as ProductOrderDate INTO reporting.ProductOrderHistory FROM dbo.product p
RIGHT JOIN dbo.[order] o ON p.ProductID = o.ProductID
INNER JOIN dbo.customer c ON o.CustomerID = c.CustomerID
WHERE p.ManufacturerName = 'Contoso'
OR (o.OrderDate >= '20110301' AND o.OrderDate < '20110601')
G. SELECT c.CustomerName, p.ProductName, p.SalePrice, p.ManufacturerName, CAST(o.OrderDate as datetime) as ProductOrderDate INTO reporting.ProductOrderHistory FROM dbo.product p
CROSS JOIN dbo.[order] o ON p.ProductID = o.ProductID
CROSS JOIN dbo.customer c ON o.CustomerID = c.CustomerID
WHERE p.ManufacturerName = 'Contoso'
OR o.OrderDate BETWEEN '20110301' AND '20110531'
H. SELECT c.CustomerName, p.ProductName, p.SalePrice, p.ManufacturerName, CAST(o.OrderDate as datetime) as ProductOrderDate INTO reporting.ProductOrderHistory FROM dbo.product p
LEFT JOIN dbo.[order] o ON p.ProductID = o.ProductID
LEFT JOIN dbo.customer c ON o.CustomerID = c.CustomerID
WHERE p.ManufacturerName = 'Contoso'
OR o.OrderDate >= '20110301'
AND o.OrderDate < '20110601'
Correct Answer: AD
Explanation/Reference:

Question 82
Which Transact-SQL statement should you use?
You have tables named Sales.SalesOrderDetails and Sales.SalesOrderHeader. You have been tasked to update the discount amounts for the sales of a particular salesperson.
You need to set UnitPriceDiscount to .1 for all entries in Sales.SalesOrderDetail that only correspond to SalesPersonID 290.
Which Transact-SQL statement should you use?
A. UPDATE Sales.SalesOrderDetail
 SET UnitPriceDiscount = .1
 WHERE EXISTS (SELECT * FROM Sales.SalesOrderHeader h
 WHERE h.SalesPersonID = 290);
B. UPDATE Sales.SalesOrderDetail
 SET UnitPriceDiscount = .1
 FROM Sales.SalesOrderHeader h
 WHERE h.SalesPersonID = 290;
C. UPDATE d
 SET UnitPriceDiscount = .1
 FROM Sales.SalesOrderDetail d
 INNER JOIN Sales.SalesOrderHeader h ON h.SalesOrderID = d.SalesOrderID
 WHERE h.SalesPersonID = 290;
D. UPDATE Sales.SalesOrderDetail
 SET UnitPriceDiscount = .1
 FROM Sales.SalesOrderDetail d
 WHERE EXISTS (SELECT * FROM Sales.SalesOrderHeader h
 WHERE h.SalesPersonID = 290);
Correct Answer: C
Explanation/Reference:

Question 83
What should you do?
You are updating a database table. You need to partition the table to store only the last 1000 rows of data in the table.
What should you do?
A. Create the partition function, the partition scheme, and the distributed partitioned view.
B. Create the partition function and the partition scheme, and update the table.
C. Add a secondary file to the primary filegroups, update the table, and create the distributed partitioned view.
D. Create the partition function, update the table, and create a filtered index.
Correct Answer: B
Explanation/Reference:

Question 84
Which dynamic management view should you use?
You need to build CREATE INDEX statements for all the missing indexes that SQL Server has identified.
Which dynamic management view should you use?
A. sys.dm_db_missing_index_columns
B. sys.dm_db_index_usage_stats
C. sys.dm_db_missing_index_group_stats
D. sys.dm_db_missing_index_details
Correct Answer: D
Explanation/Reference:

Question 85
Which Transact-SQL statement should you use?
You need to write a query that uses a ranking function that returns the sequential number of a row within a partition of a result set, starting at 1 for the first row in each partition.
Which Transact-SQL statement should you use?
A. ROW_NUMBER
B. DENSE_RANK
C. RANK
D. NTILE(10)
Correct Answer: A
Explanation/Reference:

Question 86
Which SQL query should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You are a developer for a Microsoft SQL Server 2008 R2 database instance.
You create tables named order, customer, and product as follows:
CREATE TABLE [dbo].[order] ([OrderID] [int], [ProductID] [int], [CustomerID] [int], [OrderDate] [datetime]);
CREATE TABLE [dbo].[customer] ([CustomerID] [int], [CustomerName] [varchar](100), [Address] [varchar](200), [City] [varchar](100), [State] [varchar](50), [ZipCode] [varchar](5));
CREATE TABLE [dbo].[product] ([ProductID] [int], [ProductName] [varchar](100), [SalePrice] [money], [ManufacturerName] [varchar](100));

You need to write a query to identify all customers who have ordered for an average amount of more than 500 or more from September 01, 2011.

Which SQL query should you use?

A. SELECT p.ProductName, DATEPART(mm, o.OrderDate) OrderMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
GROUP BY p.ProductName, DATEPART(mm, o.OrderDate);
B. SELECT c.CustomerName, COUNT(o.OrderID) AS Orders
FROM customer c
INNER JOIN [order] o ON c.CustomerID = o.CustomerID
WHERE COUNT(o.OrderID) > 10
GROUP BY c.CustomerName;
C. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
INNER JOIN customer c ON o.CustomerID = c.CustomerID
WHERE o.OrderDate > '09/01/2011'
GROUP BY c.CustomerName
HAVING AVG(p.SalePrice) >= 500;
D. SELECT p.ProductName, DATEPART(mm, o.OrderDate) OrderMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
GROUP BY p.ProductName, DATEPART(mm, o.OrderDate);
E. SELECT p.ProductName, DATEPART(mm, o.OrderDate) OrderMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
GROUP BY CUBE;
F. SELECT c.CustomerName, COUNT(o.OrderID) AS Orders
FROM customer c
INNER JOIN [order] o ON c.CustomerID = o.CustomerID
GROUP BY c.CustomerName
HAVING COUNT(o.OrderID) > 10;
G. SELECT p.ProductName, DATEPART(mm, o.OrderDate) OrderMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
GROUP BY c.CustomerName, p.ProductName, OrderMonth;
H. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
INNER JOIN customer c ON o.CustomerID = c.CustomerID
HAVING COUNT(o.OrderID) > 10;
I. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
INNER JOIN customer c ON o.CustomerID = c.CustomerID
GROUP BY GROUPING SETS (c.CustomerName), (p.ProductName), ());
J. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
INNER JOIN customer c ON o.CustomerID = c.CustomerID
WHERE o.OrderDate > '09/01/2011' AND AVG(p.SalePrice) >= 500

Correct Answer: C

Explanation/Reference:

Question 87

Which three Transact-SQL statements should you use?
You administer a Microsoft SQL Server 2008R2 database that hosts a customer relationship management (CRM) application.
The application supports the following two types of customers as shown in the exhibit. (Click the Exhibit button.)

- Business customers who have shipments sent to their office locations
- Residential customers who have shipments sent to their home address

You need to generate a list of residential customers who live in North America.
Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and arrange them in the correct order.)

Exhibit:

Build List and Reorder:
Which Transact-SQL statement should you use?

You administer a Microsoft SQL Server 2008 database. The database contains tables named Customer, Subscriptions, and Orders that have the following definitions:

CREATE TABLE dbo.Customer (CustomerID int NOT NULL PRIMARY KEY,
FirstName varchar(255) NOT NULL,
LastName varchar(255) NOT NULL,
CustomerAddress varchar(1024))

CREATE TABLE dbo.Subscriptions (SubscriptionID int NOT NULL PRIMARY KEY,
SubscriptionName varchar(255) NOT NULL,
CustomerID int FOREIGN KEY NOT NULL REFERENCES Customer(CustomerID))

CREATE TABLE dbo.Orders (OrderID int NOT NULL PRIMARY KEY,
OrderText varchar(255) NOT NULL)
Customers are considered active if they meet the following requirements:

- Placed an order for a subscription that is recorded in the Subscriptions table.
- Placed an order for an individual product that is recorded in the Orders table.

You need to create a view that shows unique rows where the customer either has made an Order or has a Subscription.

Which Transact-SQL statement should you use?

A. CREATE VIEW dbo.vw_ActiveCustomers
 AS
 SELECT c.CustomerID, c.FirstName, c.LastName, c.CustomerAddress
 FROM dbo.Customer c
 WHERE dbo.CustomerId in (SELECT CustomerId
 FROM dbo.Subscriptions s
 UNION ALL
 SELECT CustomerId
 FROM dbo.Orders o)

B. CREATE VIEW dbo.vw_ActiveCustomers
 AS
 SELECT DISTINCT c.CustomerID, c.FirstName, c.LastName, c.CustomerAddress
 FROM dbo.Customer c
 LEFT OUTER JOIN dbo.Subscriptions s ON c.CustomerID = s.CustomerID
 LEFT OUTER JOIN dbo.Orders o ON c.CustomerID = o.CustomerID
 C. CREATE VIEW dbo.vw_ActiveCustomers
 AS
 SELECT c.CustomerID, c.FirstName, c.LastName, c.CustomerAddress
 FROM dbo.Customer c
 WHERE CustomerId in (SELECT CustomerId
 FROM dbo.Subscriptions s
 INTERSECT
 SELECT CustomerId
 FROM dbo.Orders o)

Correct Answer: AH

Explanation/Reference:

Question 89
Which Transact-SQL batch should you use?

You are the database developer for an order-processing application. After a customer places an order, a confirmation message must be sent to the customer.
The following Transact-SQL batch has been run in the database:

```
ALTER DATABASE NORTHWIND SET ENABLE_BROKER;
CREATE MESSAGE TYPE EmailMessage VALIDATION = NONE;
CREATE CONTRACT EmailContract (EmailMessage SENT BY INITIATOR);
CREATE QUEUE EmailSendQueue;
CREATE QUEUE EmailReceiveQueue;
CREATE SERVICE EmailSendService ON QUEUE EmailSendQueue (EmailContract);
CREATE SERVICE EmailReceiveService ON QUEUE EmailReceiveQueue (EmailContract);
```

You need to place the message in the EmailSendQueue for the email system to process. Which Transact-SQL batch should you use?

A. ` UNIQUEIDENTIFIER, @Message NVARCHAR(128);
BEGIN DIALOG CONVERSATION @EmailDialog
FROM SERVICE EmailSendService
TO SERVICE 'EmailReceiveService'
ON CONTRACT EmailContract WITH ENCRYPTION = OFF;
SET @Message = N'Dear Sir/Madam. Your order has been received.';
SEND ON CONVERSATION @EmailDialog MESSAGE TYPE EmailMessage (@Message);
GO
```

B. `[email protected] UNIQUEIDENTIFIER, @Message NVARCHAR(128);
BEGIN DIALOG @EmailDialog
FROM SERVICE EmailSendService
TO SERVICE 'EmailReceiveService'
ON CONTRACT EmailContract;
SET @Message = N'Dear Sir/Madam. Your order has been received.';
SEND ON CONVERSATION @EmailDialog (@Message);
```

C. ` UNIQUEIDENTIFIER, @Message NVARCHAR(128);
BEGIN DIALOG @EmailDialog
FROM SERVICE EmailSendService
TO SERVICE EmailReceiveService
ON CONTRACT EmailContract;
SET @Message = N'Dear Sir/Madam. Your order has been received.';
SEND ON CONVERSATION @EmailDialog MESSAGE TYPE EmailMessage (@Message);
GO

D. ` UNIQUEIDENTIFIER, @Message NVARCHAR(128);
BEGIN DIALOG @EmailDialog
FROM SERVICE EmailSendService
TO SERVICE 'EmailReceiveService'
ON CONTRACT EmailContract WITH LIFETIME = 1000;
SET @Message = N'Dear Sir/Madam. Your order has been received.';
SEND ON CONVERSATION @EmailDialog MESSAGE TYPE EmailMessage (@Message);
GO

E. ` BIGINT, @Message NVARCHAR(128);
BEGIN DIALOG @EmailDialog
FROM SERVICE EmailSendService
TO SERVICE 'EmailReceiveService'
ON CONTRACT EmailContract;
SET @Message = N'Dear Sir/Madam. Your order has been received.';
SEND ON CONVERSATION @EmailDialog MESSAGE TYPE EmailMessage (@Message);
GO

F. ` BIGINT, @Message NVARCHAR(128);
BEGIN DIALOG @EmailDialog
FROM SERVICE EmailSendService
TO SERVICE 'EmailReceiveService'
ON CONTRACT EmailContract;
SET @Message = N'Dear Sir/Madam. Your order has been received.';
SEND ON CONVERSATION @EmailDialog MESSAGE TYPE EmailMessage (@Message);
GO

G. ` BIGINT, @Message NVARCHAR(128);
BEGIN DIALOG @EmailDialog
FROM SERVICE EmailSendService
TO SERVICE 'EmailReceiveService'
ON CONTRACT EmailContract;
SET @Message = N'Dear Sir/Madam. Your order has been received.';
SEND ON CONVERSATION @EmailDialog MESSAGE TYPE EmailMessage (@Message);
GO

H. ` BIGINT, @Message NVARCHAR(128);
BEGIN DIALOG @EmailDialog
FROM SERVICE EmailSendService
TO SERVICE 'EmailReceiveService'
ON CONTRACT EmailContract;
SET @Message = N'Dear Sir/Madam. Your order has been received.';
SEND ON CONVERSATION @EmailDialog MESSAGE TYPE EmailMessage (@Message);
GO

Correct Answer: AD
Question 90
Which Transact-SQL statement should you use?
You have a table named Sales.PotentialClients. This table contains a column named EmailAddress. You are tasked to develop a report that returns valid ".com" email addresses from Sales.PotentialClients. A valid email address must have at least one character before the @ sign, and one character after the @ sign and before the ".com."

You need to write a Transact-SQL statement that returns data to meet the business requirements.
Which Transact-SQL statement should you use?
A. SELECT * FROM Sales.PotentialClients WHERE EmailAddress LIKE '__%@__.com'
B. SELECT * FROM Sales.PotentialClients WHERE EmailAddress LIKE '!%@%.com'
C. SELECT * FROM Sales.PotentialClients WHERE EmailAddress LIKE '!%@%.com'
D. SELECT* FROM Sales.PotentialClients WHERE EmailAddress LIKE '!@%].com'

Correct Answer: B
Explanation/Reference:

Question 91
Which Transact-SQL statement should you use?
Your server collation is SQL_Latin1_General_CP1_CI_AS. You have a database named Contoso that has a collation setting of SQL_Scandinavian_Cp850_CI_AS.
You create and populate a temporary table #Person from table dbo.Person in Contoso using the following statements:
USE Contoso;
CREATE TABLE #Person (LastName nchar(128));
INSERT INTO #Person SELECT LastName FROM dbo.Person;
You then run the following command:
SELECT * FROM dbo.Person a JOIN #Person b
ON a.LastName = b.LastName;
This command returns the following error: Cannot resolve the collation conflict between "SQL_Latin1_General_CP1_CI_AS" and "SQL_Scandinavian_Cp850_CI_AS" in the equal to operation. You need to resolve the collation conflict.
Which Transact-SQL statement should you use?
A. CREATE TABLE #Person (LastName nvarchar(128) COLLATE database_default);
B. CREATE TABLE #Person (LastName nvarchar(128) COLLATE SQL_Latin1_General_CP1_CI_AS);
C. CREATE TABLE #Person (LastName nvarchar(128) SPARSE);
D. CREATE TABLE tmpPerson (LastName nvarchar(128) COLLATE SQL_Latin1_General_CP1_CI_AS);

Correct Answer: A
Explanation/Reference:

Question 92
What script should you use?
You have a server named Contoso with multiple databases. You have been tasked to write a PowerShell script to determine which databases on the server are larger than 100GB.
You open PowerShell from SQL Server Management Studio. You create two variables as follows:
PS SQLSERVER:SQLContoso> $MultipleOfGB = 1024 * 1024
PS SQLSERVER:SQLContoso> $Server = Get-Item
You need to determine which script will produce the desired list of databases. What script should you use?
A. $Server | Where-Object{($_.DatabaseSize * $MultipleOfGB) -match 100GB} | Select-Object Name, DatabaseSize
B. $Server.Databases | Where-Object{($_.Size * $MultipleOfGB) -gt 100GB} | Select-Object Name, Size
C. $Server.Databases | Where-Object{($_.Size * $MultipleOfGB) -match 100GB} | Select-Object Name, Size
D. $Server | Where-Object{($_.DatabaseSize * $MultipleOfGB) -gt 100GB} | Select-Object Name, DatabaseSize

Correct Answer: B
Explanation/Reference:

Question 93
Which tracking method should you use?
You are using Microsoft SQL Server 2008 Enterprise Edition. You need to maintain a history of all data modifications made to a table, including the type of modification and the values modified.
Which tracking method should you use?
A. Database Audit
B. Change Data Capture
C. Change Tracking
D. C2 Audit Tracing

Correct Answer: B
Explanation/Reference:

Question 94
Which feature should you use?
You have two views named Sales.SalesSummaryOverall and Sales.CustomerAndSalesSummary.
They are defined as follows:

```
CREATE VIEW Sales.SalesSummaryOverall
AS
SELECT CustomerId, SUM(SalesTotal) AS OverallTotal
FROM Sales.SalesOrder
GROUP BY CustomerId
GO
```

```
CREATE VIEW Sales.CustomerAndSalesSummary
AS
SELECT Customer.Name, SalesSummaryOverall. OverallTotal,
(SELECT AVG(OverallTotal)
FROM Sales.SalesSummaryOverall
WHERE SalesSummaryOverall.CustomerId = Customer.CustomerId) AS avgOverallTotal,
(SELECT MAX(OverallTotal)
FROM Sales.SalesSummaryOverall
WHERE SalesSummaryOverall.CustomerId = Customer.CustomerId) AS maxOverallTotal,
FROM Sales.Customer
LEFT OUTER JOIN Sales.Sales.SalesSummaryOverall
ON SalesSummaryByYear.CustomerId = Customer.CustomerId
GO
```

You have been tasked to modify the Sales.CustomerAndSalesSummary view to remove references to other views.
You need to identify a feature to use in the modified version of the Sales.CustomerAndSalesSummary object to achieve the task.
Which feature should you use?
A. Table variables
B. Common table expressions
C. Temporary tables
D. User-defined table types

Correct Answer: B

Explanati

Question 95
Which SQL statement should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You administer a Microsoft SQL Server 2008 database for an inventory management system.
The application contains a product table that has the following definition:

```
CREATE TABLE [Production].[Product]
([ProductID] [int] IDENTITY(1,1) NOT NULL,
[Name] [nvarchar](50) NOT NULL,
[ProductNumber] [nvarchar](25) NOT NULL,
[Color] [nvarchar](15) NULL,
[Class] [nchar](2) NULL,
[Active] [bit] NOT NULL,
[ModifiedDate] [datetime] NOT NULL,
CONSTRAINT [PK_Product_ProductID] PRIMARY KEY CLUSTERED ([ProductID] ASC) ON [PRIMARY]) ON [PRIMARY]
GO
```

You want to add a new field to the Product table to meet the following requirements:
• Allows user-specified information that will be added to records in the Product table.
• Supports the largest storage size needed for the field.
• Uses the smallest data type necessary to support the domain of values that will be entered by users.

You need to add a field named User_Data_1 to support U.S. dollar currency values that have two decimals and as large as 500,000 U.S. dollars.

Which SQL statement should you use?
A. ALTER TABLE [Production].[Product] ADD [User_Data_1] VARCHAR(100)
B. ALTER TABLE [Production].[Product] ADD [User_Data_1] CHAR(100)
C. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(6,11)
D. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATETIME
E. ALTER TABLE [Production].[Product] ADD [User_Data_1] BIGINT
F. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(11,6)
G. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLMONEY
H. ALTER TABLE [Production].[Product] ADD [User_Data_1] BIT
I. ALTER TABLE [Production].[Product] ADD [User_Data_1] NCHAR(100)
J. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATETIME2
K. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(5,6)
L. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLDATETIME
M. ALTER TABLE [Production].[Product] ADD [User_Data_1] NVARCHAR(100)
N. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLINT
O. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATE
P. ALTER TABLE [Production].[Product] ADD [User_Data_1] TINYINT
Q. ALTER TABLE [Production].[Product] ADD [User_Data_1] MONEY
R. ALTER TABLE [Production].[Product] ADD [User_Data_1] INT

Correct Answer: Q

Explanati

```
Question 96
Which Transact-SQL statement or statements should you use?
You administer a Microsoft SQL Server 2008 database that contains a table named Sales.SalesOrderDetail and a view named Sales.ProductOrders. The view has the following definition:
CREATE VIEW Sales.ProductOrders
AS
SELECT ProductID, COUNT(*) as NbrOfOrders, SUM(OrderQty) as TotalOrderQty
FROM Sales.SalesOrderDetail
GROUP BY ProductId
GO
The Sales.SalesOrderDetail table contains 5 million rows. Report queries that join to this view consume excessive disk I/O. You need to create an index on the view.
Which Transact-SQL statement or statements should you use?
A. ALTER VIEW Sales.ProductOrders
WITH SCHEMABINDING
AS
SELECT ProductID, COUNT(*) as NbrOfOrders, SUM(OrderQty) as TotalOrderQty
FROM Sales.SalesOrderDetail
GROUP BY ProductId
GO
CREATE UNIQUE CLUSTERED INDEX IX_V_ProductOrders ON Sales.ProductOrders (ProductID)
GO
B. ALTER VIEW Sales.ProductOrders
WITH SCHEMABINDING
AS
SELECT ProductID, COUNT_BIG(*) as NbrOfOrders, SUM(OrderQty) as TotalOrderQty
FROM Sales.SalesOrderDetail WITH (NOLOCK)
GROUP BY ProductId
GO
CREATE UNIQUE CLUSTERED INDEX IX_V_ProductOrders ON Sales.ProductOrders (ProductID)
GO
C. ALTER VIEW Sales.ProductOrders
WITH SCHEMABINDING
AS
SELECT ProductID, COUNT_BIG(*) as NbrOfOrders, SUM(OrderQty) as TotalOrderQty
FROM Sales.SalesOrderDetail
GROUP BY ProductId
GO
CREATE UNIQUE CLUSTERED INDEX IX_V_ProductOrders ON Sales.ProductOrders (ProductID)
GO
D. ALTER VIEW Sales.ProductOrders
AS
SELECT ProductID, COUNT_BIG(*) as NbrOfOrders, SUM(OrderQty) as TotalOrderQty
FROM Sales.SalesOrderDetail
GROUP BY ProductId
GO
CREATE UNIQUE CLUSTERED INDEX IX_V_ProductOrders ON Sales.ProductOrders (ProductID)
GO
E. IF EXISTS (SELECT * FROM sys.views WHERE object_id = OBJECT_ID(N'[Sales].[ProductOrders]'))
DROP VIEW [Sales].[ProductOrders]
GO
CREATE VIEW Sales.ProductOrders
WITH SCHEMABINDING
AS
SELECT ProductID, COUNT_BIG(*) as NbrOfOrders, SUM(OrderQty) as TotalOrderQty
FROM Sales.SalesOrderDetail
GROUP BY ProductId
GO
CREATE UNIQUE CLUSTERED INDEX IX_V_ProductOrders ON Sales.ProductOrders (ProductID)
GO
F. IF EXISTS (SELECT * FROM sys.views WHERE object_id = OBJECT_ID(N'[Sales].[ProductOrders]'))
DROP VIEW [Sales].[ProductOrders]
GO
CREATE VIEW Sales.ProductOrders
AS
SELECT ProductID, COUNT_BIG(*) as NbrOfOrders, SUM(OrderQty) as TotalOrderQty
FROM Sales.SalesOrderDetail
GROUP BY ProductId
GO
CREATE UNIQUE CLUSTERED INDEX IX_V_ProductOrders ON Sales.ProductOrders (ProductID)
GO
G. IF EXISTS (SELECT * FROM sys.views WHERE object_id = OBJECT_ID(N'[Sales].[ProductOrders]'))
DROP VIEW [Sales].[ProductOrders]
GO
CREATE VIEW Sales.ProductOrders
WITH SCHEMABINDING
AS
SELECT ProductID, COUNT_BIG(*) as NbrOfOrders, SUM(OrderQty) as TotalOrderQty
FROM Sales.SalesOrderDetail WITH (NOLOCK)
GROUP BY ProductId
GO
CREATE UNIQUE CLUSTERED INDEX IX_V_ProductOrders ON Sales.ProductOrders (ProductId)
GO
IF EXISTS (SELECT * FROM sys.views WHERE object_id = OBJECT_ID(N'[Sales].[ProductOrders]'))
DROP VIEW [Sales].[ProductOrders]
GO
CREATE VIEW Sales.ProductOrders
WITH SCHEMABINDING
AS
SELECT ProductID, COUNT(*) as NbrOfOrders, SUM(OrderQty) as TotalOrderQty
FROM Sales.SalesOrderDetail
GROUP BY ProductId
GO
CREATE UNIQUE CLUSTERED INDEX IX_V_ProductOrders ON Sales.ProductOrders (ProductId)
GO

Correct Answer: CE
Explanation/Reference:

Question 97
Which SQL statement should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You administer a Microsoft SQL Server 2008 database for an inventory management system. The application contains a product table that has the following definition:

```
CREATE TABLE [Production].[Product](
[ProductID] [int] IDENTITY(1,1) NOT NULL,
[Name] [nvarchar](50) NOT NULL,
[ProductNumber] [nvarchar](25) NOT NULL,
[Color] [nvarchar](15) NULL,
[Class] [nchar](2) NULL,
[Style] [nchar](2) NULL,
[Active] [bit] NOT NULL,
[ModifiedDate] [datetime] NOT NULL,
CONSTRAINT [PK_Product_ProductID] PRIMARY KEY CLUSTERED ([ProductID] ASC) ON [PRIMARY]) ON [PRIMARY]
GO
```

You want to add a new field to the Product table to meet the following requirements:
• Allows user-specified information that will be added to records in the Product table.
• Supports the largest storage size needed for the field.
• Uses the smallest data type necessary to support the domain of values that will be entered by users.

You need to add a field named User_Data_1 to support date values that are no more precise than to the hour.
Which SQL statement should you use?
A. ALTER TABLE [Production].[Product] ADD [User_Data_1] NVARCHAR(100)
B. ALTER TABLE [Production].[Product] ADD [User_Data_1] VARCHAR(100)
C. ALTER TABLE [Production].[Product] ADD [User_Data_1] BIGINT
D. ALTER TABLE [Production].[Product] ADD [User_Data_1] BIT
E. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLINT
F. ALTER TABLE [Production].[Product] ADD [User_Data_1] MONEY
G. ALTER TABLE [Production].[Product] ADD [User_Data_1] TINYINT
H. ALTER TABLE [Production].[Product] ADD [User_Data_1] NCHAR(100)
I. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(11,6)
J. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATETIME2
K. ALTER TABLE [Production].[Product] ADD [User_Data_1] CHAR(100)
L. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATE

Correct Answer: O
Explanation/Reference:

Question 98
Which trigger syntax should you use?
You are developing a database using Microsoft SQL Server 2008. The database contains the tables shown in the following exhibit. (Click the Exhibit button.)

You are required to prevent parts from being deleted if they belong to a kit. If a part belongs to a kit, the delete should not occur and the IsDeleted column for the row should be changed to “True”. Parts should be deleted if they do not belong to a kit. You have the following Transact-SQL statement to be used in a trigger:
```
UPDATE p
SET IsDeleted = 1
FROM KitPart kp
JOIN deleted d ON kp.PartID = d.PartID
```

JOIN Part p ON kp.PartID = p.PartID;
DELETE FROM p
FROM Part p
JOIN deleted d ON p.PartID = d.PartID
LEFT OUTER JOIN KitPart kp ON p.PartID = kp.PartID
WHERE kp.KitID IS NULL;

You need to implement the Transact-SQL statement in a trigger. Which trigger syntax should you use?
Exhibit:

A. CREATE TRIGGER tr_Part_d ON Part INSTEAD OF DELETE AS BEGIN …END
B. CREATE TRIGGER tr_Part_d ON Part AFTER DELETE AS BEGIN …END
C. CREATE TRIGGER tr_KitPart_d ON KitPart AFTER DELETE AS BEGIN …END
D. CREATE TRIGGER tr_KitPart_d ON KitPart INSTEAD OF DELETE AS BEGIN …END

Correct Answer: A
Explanation/Reference:

Question 99
Which severity level should you use?
You are using TRY…CATCH error handling. You need to raise an error that will pass control to the CATCH block. Which severity level should you use?
A. 10
B. 16
C. 9
D. 0

Correct Answer: B
Explanation/Reference:

Question 100
Which types of stored procedures should you alter?
You need to alter stored procedures to use the WITH RECOMPILE option.
Which types of stored procedures should you alter? (Each correct answer represents a complete solution. Choose two.)
A. Stored procedures implemented from CLR assemblies.
B. Stored procedures that require the FOR REPLICATION option.
C. Stored procedures that require the WITH ENCRYPTION option.
D. Stored procedures that contain queries that use the OPTION (RECOMPILE) hint.
Question 101
Which Transact-SQL statement should you use?
Your company uses an application that passes XML to the database server by using stored procedures.
The database server has a large number of XML handles that are currently active.
You determine that the XML is not being flushed from SQL Server memory.
You need to identify the system stored procedure to flush the XML from memory.
Which Transact-SQL statement should you use?
A. sp_xml_preparedocument
B. sp_xml_removedocument
C. DBCC DROPCLEANBUFFERS
D. DBCC FREEPROCACHE
Correct Answer: B

Question 102
Which SQL query should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You are a developer for a Microsoft SQL Server 2008 R2 database instance.
You create tables named order, customer, and product as follows:
CREATE TABLE [dbo].[order] (
    [OrderID] [int],
    [ProductID] [int],
    [CustomerID] [int],
    [OrderDate] [datetime],
    [quantity] [int]
);
CREATE TABLE [dbo].[customer] ([CustomerID] [int],
    [CustomerName] [varchar](100),
    [Address] [varchar](200),
    [City] [varchar](100),
    [State] [varchar](50),
    [ZipCode] [varchar](5));
CREATE TABLE [dbo].[product] ([ProductID] [int],
    [ProductName] [varchar](100),
    [SalePrice] [money],
    [ManufacturerName] [varchar](100));
You need to write a query to return all customer names and total number of orders for customers who have placed more than 10 orders.
Which SQL query should you use?
A. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   INNER JOIN customer c ON o.CustomerID = c.CustomerID
   WHERE o.OrderDate > '09/01/2011'
   GROUP BY c.CustomerName
   HAVING AVG(p.SalePrice) >= 500
B. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   INNER JOIN customer c ON o.CustomerID = c.CustomerID
   WHERE o.OrderDate > '09/01/2011' AND AVG(p.SalePrice) >= 500
C. SELECT p.ProductName, DATEPART(mm, o.OrderDate) OrderMonth, SUM(p.SalePrice) AS Sales
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   GROUP BY p.ProductName, DATEPART(mm, o.OrderDate);
D. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   INNER JOIN customer c ON o.CustomerID = c.CustomerID
   GROUP BY GROUPING SETS ((c.CustomerName), (p.ProductName), ());
E. SELECT p.ProductName, DATEPART(mm, o.OrderDate) OrderMonth, SUM(p.SalePrice) AS Sales
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   GROUP BY p.ProductName
   GROUP BY DATEPART(mm, o.OrderDate);
F. SELECT c.CustomerName, COUNT(o.OrderID) AS Orders
   FROM customer c
   INNER JOIN [order] o ON c.CustomerID = o.CustomerID
   WHERE COUNT(o.OrderID) > 10
GROUP BY c.CustomerName;
G. SELECT p.ProductName, DATEPART(mm, o.OrderDate) OrderMonth, SUM(p.SalePrice) AS Sales
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   GROUP BY p.ProductName
   DATEPART(mm, o.OrderDate)
   GROUP BY p.ProductName
   ORDER BY OrderMonth;
H. SELECT c.CustomerName, COUNT(o.OrderID) AS Orders
   FROM customer c
   INNER JOIN [order] o ON c.CustomerID = o.CustomerID
   WHERE COUNT(o.OrderID) > 10
GROUP BY c.CustomerName;
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
GROUP BY p.ProductName, OrderMonth;
I. SELECT c.CustomerName,COUNT(o.OrderID) AS Orders
FROM customer c
INNER JOIN [order] o ON c.CustomerID = o.CustomerID
GROUP BY c.CustomerName
HAVING COUNT(o.OrderID) > 10;
J. SELECT c.CustomerName,p.ProductName,SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN [order] o ON p.ProductID = o.ProductID
INNER JOIN customer c ON o.CustomerID = c.CustomerID
GROUP BY GROUPING SETS ((c.CustomerName, p.ProductName), ());

Correct Answer: I
Explanation/Reference:

Question 103
Which rows will be displayed?
You have the following two tables.
Products
<table>
<thead>
<tr>
<th>ProductID</th>
<th>ProductName</th>
<th>VendorID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Product1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Product2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Product3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Product4</td>
<td>0</td>
</tr>
</tbody>
</table>
ProductChanges
<table>
<thead>
<tr>
<th>ProductID</th>
<th>ProductName</th>
<th>VendorID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Product1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Product2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>NewProduct3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Product5</td>
<td>1</td>
</tr>
</tbody>
</table>
You execute the following statement.
MERGE Products
USING ProductChanges
ON (Products.ProductID = ProductChanges.ProductID)
WHEN MATCHED AND Products.VendorID = 0 THEN DELETE
WHEN MATCHED THEN UPDATE SET Products.ProductName = ProductChanges.ProductName, Products.VendorID =
ProductChanges.VendorID;
You need to identify the rows that will be displayed in the Products table.
Which rows will be displayed?
A. ProductID ProductName VendorID
   | 1       | Product1    | 1        |
   | 2       | Product2    | 1        |
   | 3       | NewProduct3 | 2        |
   | 5       | Product5    | 1        |
B. ProductID ProductName VendorID
   | 1       | Product1    | 1        |
   | 2       | Product2    | 1        |
   | 3       | NewProduct3 | 2        |
   | 5       | Product5    | 1        |
C. ProductID ProductName VendorID
   | 2       | Product2    | 1        |
   | 3       | NewProduct3 | 2        |
   | 4       | Product4    | 0        |
D. ProductID ProductName VendorID
   | 2       | Product2    | 1        |
   | 3       | NewProduct3 | 2        |
Correct Answer: C
Explanation/Reference:

Question 104
Which query should you use?
You have a database that contains two tables named ProductCategory and ProductSubCategory.
You need to write a query that returns a list of product categories that contain more than ten sub-categories.
Which query should you use?
A. SELECT [Name]
   FROM ProductSubCategory
   WHERE ProductCategoryID IN (SELECT ProductCategoryID
   FROM ProductCategory)
   GROUP BY [Name]
   HAVING COUNT(*) > 10
B. SELECT [Name]
   FROM ProductCategory c
WHERE NOT EXISTS (SELECT ProductCategoryID
FROM ProductSubCategory
WHERE ProductCategoryID = c.ProductCategoryID
GROUP BY ProductCategoryID
HAVING COUNT(*) > 10)
C. SELECT [Name]
FROM ProductSubCategory
WHERE ProductCategoryID NOT IN (SELECT ProductCategoryID
FROM ProductCategory)
GROUP BY [Name]
HAVING COUNT(*) > 10
D. SELECT [Name]
FROM ProductCategory c
WHERE EXISTS (SELECT ProductCategoryID
FROM ProductSubCategory
WHERE ProductCategoryID = c.ProductCategoryID
GROUP BY ProductCategoryID
HAVING COUNT(*) > 10)
Correct Answer: D
Explanation/Reference:

Question 105
Which four actions should you perform in sequence?
You are a developer of a Microsoft SQL Server 2008 R2 database instance that supports a web-based order-entry application.
You need to create a server-side trace that meets the following requirements:
•Captures performance information from 07:00 hours to 07:30 hours daily.
•Stores trace information in a portable format.
Which four actions should you perform in sequence? (To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.)
Build List and Reorder:

Correct Answer:
E. Create a server-side trace by using the SQL Server Profiler tool. Configure the trace to stop at 07:30 hours.
C. Save the trace information to a trace file.
D. Export the trace file to a SQL script.
F. Create a SQL Server Agent job by using the exported SQL script. Schedule the job to start at 07:00 hours daily.
Explanation/Reference:

Question 106
Which Transact-SQL code segment should you use?
A table named Locations contains 5000 locations and the number of sales made at each location.
You need to display the top 5 percent of locations by sales made.
Which Transact-SQL code segment should you use?
A. WITH Percentages AS
  ( SELECT *, NTILE(20) OVER (ORDER BY SalesMade) AS groupingColumn FROM Locations)
  SELECT *
FROM Percentages
WHERE groupingColumn = 20;
B. WITH Percentages AS
  (SELECT *, NTILE(5) OVER (ORDER BY SalesMade) AS groupingColumn FROM Locations)
  SELECT *
Explanation/Reference:
FROM percentages
WHERE groupingColumn = 1;
C. WITH Percentages AS
(SELECT *, NTILE(20) OVER (ORDER BY SalesMade) AS groupingColumn FROM Locations)
SELECT *
FROM Percentages
WHERE groupingColumn = 1;
D. WITH Percentages AS
(SELECT *, NTILE(5) OVER (ORDER BY SalesMade) AS groupingColumn FROM Locations)
SELECT *
FROM Percentages
WHERE groupingColumn = 5;

Correct Answer: A
Explanation/Reference:

Question 107
Which Transact-SQL statement should you use?
Your company manufactures and distributes bowling balls. You have a full-text catalog named ftCatalog which contains the ftInventory index on the
Products table. Your marketing department has just inserted a new bowling ball into the Inventory table. You notice only the new bowling ball is not
being included in the results of the full-text searches. You have confirmed that the row exists in the Products table.

You need to update the full-text catalog in the least amount of time.
Which Transact-SQL statement should you use?
A. ALTER FULLTEXT INDEX ON ftInventory RESUME POPULATION
B. ALTER FULLTEXT CATALOG ftCatalog REBUILD
C. ALTER FULLTEXT INDEX ON ftInventory START UPDATE POPULATION
D. ALTER FULLTEXT INDEX ON ftInventory START FULL POPULATION

Correct Answer: C
Explanation/Reference:

Question 108
Which SQL query should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one
question in the series.
You are a developer for a Microsoft SQL Server 2008 R2 database instance used to support a customer service application.
You create tables named complaint, customer, and product as follows:
CREATE TABLE [dbo].[complaint] ([ComplaintID] [int], [ProductID] [int], [CustomerID] [int], [ComplaintDate] [datetime]);
CREATE TABLE [dbo].[customer] ([CustomerID] [int], [CustomerName] [varchar](100), [Address] [varchar](200), [City] [varchar](100), [State] [varchar](50), [ZipCode] [varchar](5));
CREATE TABLE [dbo].[product] ([ProductID] [int], [ProductName] [varchar](100), [SalePrice] [money], [ManufacturerName] [varchar](100));
You need to write a query to sum the monthly sales of each product.
Which SQL query should you use?
A. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY p.ProductName, ComplaintMonth;
B. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
GROUP BY GROUPING SETS ((c.CustomerName), (p.ProductName), ());
C. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY p.ProductName, DATEPART(mm, com.ComplaintDate);
D. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
GROUP BY c.CustomerName
HAVING AVG(p.SalePrice) >= 500
E. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
GROUP BY p.ProductName
HAVING AVG(p.SalePrice) >= 500
F. SELECT c.CustomerName, COUNT(com.ComplaintID) AS complaints
FROM customer c
INNER JOIN complaint com ON c.CustomerID = com.CustomerID
GROUP BY c.CustomerName
HAVING COUNT(com.ComplaintID) > 10;
G. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
AND AVG(p.SalePrice) >= 500
H. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
GROUP BY GROUPING SETS ((c.CustomerName, p.ProductName), ());
I. SELECT c.CustomerName, COUNT(com.ComplaintID) AS Complaints
FROM customer c
INNER JOIN complaint com ON c.CustomerID = com.CustomerID
WHERE COUNT(com.ComplaintID) > 10
GROUP BY c.CustomerName;
J. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE;

Correct Answer: A
Explanation/Reference:

Question 109
Which code segment should you use?
You have a table named Books that has columns named BookTitle and Description. There is a full-text index on these columns.
You need to return rows from the table in which the word 'computer' exists in either column.
Which code segment should you use?
A. SELECT * FROM Books WHERE BookTitle LIKE '%computer%'
B. SELECT * FROM Books WHERE BookTitle = '%computer%' OR Description = '%computer%'
C. SELECT * FROM Books WHERE FREETEXT(BookTitle,'computer')
D. SELECT * FROM Books WHERE FREETEXT(*,'computer')

Correct Answer: D
Explanation/Reference:

Question 110
Which three Transact-SQL statements should you use?
You administer a Microsoft SQL Server 2008 database that includes a table named ProductDetails.
The Products table has the following schema:
CREATE TABLE dbo.ProductDetails(
ProductID nchar(4) NOT NULL,
ProductName nvarchar(50) NULL,
ProductDescription nvarchar(50) NULL,
UnitCost money NULL,
UnitPrice money NULL,
ReOrderLevel int NOT NULL,
CONSTRAINT PK_ProductDetails PRIMARY KEY CLUSTERED (ProductID ASC))
GO
You create a User-Defined Function (UDF) in the same database.
The UDF has the following schema:
CREATE FUNCTION dbo.CalculateProductProfit(@ProductID nchar(4))
RETURNS Money WITH SCHEMABINDING
AS
BEGIN
DECLARE @Profit Money;
SELECT @Profit = UnitPrice – UnitCost FROM dbo.ProductDetails WHERE ProductID = @ProductID;
RETURN @Profit;
END
You need to meet the following requirements:
• Ensure that the UnitPrice column in the ProductDetails table does not accept NULL values.
• Use the CalculateProductProfit() UDF to calculate profit for each product.
• Avoid accidental drop or change of the Product table.
Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and arrange them in the correct order.)
Build List and Reorder:
Question 111
Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and arrange them in the correct order.)

<table>
<thead>
<tr>
<th>Ordered List Title</th>
<th>Answer Choices Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct Answer:</td>
<td>B. DROP FUNCTION CalculateProductProfit</td>
</tr>
<tr>
<td></td>
<td>C. ALTER TABLE ProductDetails ALTER COLUMN UnitPrice Money NULL</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explaination/Reference:

The correct answer choices are B, D, and E. These statements are relevant for improving the performance of the stored procedure.

---

**Question 111**

You are a database developer for your organization. You have an application hosted on Microsoft SQL Server 2008 R2. One of the tables in the application database has the following definition:

```
CREATE TABLE XMLData(XMLPage xml NOT NULL)
```

No indexes, keys, or constraints are defined along with the table. The table currently contains more than one million entries.

An example of the XML data is shown below:

```
Company
 < Employee Name = "Mark" Department = "Finance"/>
 < Employee Name = "Peter" Department = "Sales"/>
 < Employee Name = "Susan" Department = "Facilities"/>
Company
```

A stored procedure is executed in the application. The stored procedure has the following definition:

```
CREATE PROCEDURE p_GetFinanceUser(@Name varchar(20))
AS SELECT Name = Company.Employee.value('@Name','varchar(20)'), Department = Company.Employee.value('@Department','varchar(20)')
FROM XMLData CROSS APPLY XMLQuery.node('Company/Employee') Department(Employee)
WHERE Company.Employee.exist('@Department','="Finance"') = 1
```

Users report that the response time of the stored procedure has decreased. You need to ensure that the response time of the stored procedure is improved.

Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and arrange them in the correct order.)

**Build List and Reorder:**

<table>
<thead>
<tr>
<th>Ordered List Title</th>
<th>Answer Choices Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct Answer:</td>
<td>B. DROP FUNCTION CalculateProductProfit</td>
</tr>
<tr>
<td></td>
<td>C. ALTER TABLE ProductDetails ALTER COLUMN UnitPrice Money NULL</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question 112
Which Transact-SQL clause should you insert?

You work for an international charity organization.
You are writing a query to list the highest 100 different amounts that were donated. You have written the following code segment:

```
01 SELECT *
02 FROM (SELECT Customer.CustomerID, SUM(TotalDue) AS TotalGiven,
03 FROM Customer
04 JOIN SalesOrder
05 ON Customer.CustomerID = SalesOrder.CustomerID
06 GROUP BY Customer.CustomerID) AS DonationsToFilter
07 WHERE FilterCriteria <= 100
```

You need to insert a Transact-SQL clause in line 03 to complete the query. Which Transact-SQL clause should you insert?

A. NTILE(100) OVER (ORDER BY SUM(TotalDue) DESC) AS FilterCriteria
B. DENSE_RANK() OVER (ORDER BY SUM(TotalDue) DESC) AS FilterCriteria
C. ROW_NUMBER() OVER (ORDER BY SUM(TotalDue) DESC) AS FilterCriteria
D. RANK() OVER (ORDER BY SUM(TotalDue) DESC) AS FilterCriteria

Correct Answer: B

Explanation/Reference:

Question 113
Which Transact-SQL statement should you use?

You are given a database design to evaluate. All of the tables in this database should have a clustered index.
You need to determine the tables that are missing a clustered index by using the system catalog views. Which Transact-SQL statement should you use?

A. SELECT name AS table_name
WHERE OBJECTPROPERTY(object_id,"TableHasClustIndex") = 0
ORDER BY name;
B. SELECT name AS table_name
WHERE OBJECTPROPERTY(object_id,"TableHasClustIndex") = 0
AND OBJECTPROPERTY(object_id,"TableHasUniqueCnst") = 1
ORDER BY name;
C. SELECT name AS table_name
WHERE OBJECTPROPERTY(object_id,"TableHasUniqueCnst") = 0
FROM sys.tables
WHERE OBJECTPROPERTY(object_id,"TableHasUniqueCnst") = 0

Correct Answer: A

Explanation/Reference:
ORDER BY name;
D. SELECT name AS table_name
FROM sys.tables
WHERE OBJECTPROPERTY(object_id,"TableHasClusteredIndex") = 1
AND OBJECTPROPERTY(object_id,"TableHasUniqueConstraint") = 1
ORDER BY name;

Correct Answer: A
Explanation/Reference:

**Question 114**
Which three Transact-SQL statements should you use?
You administer a Microsoft SQL Server 2008 database that contains a table named Sales.SalesOrderHeader. The Sales.SalesOrderHeader table has the following definition:

```
CREATE TABLE [Sales].[SalesOrderHeader]
([SalesOrderID] [int] IDENTITY(1,1) NOT NULL,
[OrderDate] [datetime] NOT NULL,
[DueDate] [datetime] NOT NULL,
[ShipDate] [datetime] NULL,
[Status] [tinyint] NOT NULL,
[CustomerID] [int] NOT NULL,
[SalesPersonID] [int] NULL,
[SubTotal] [money] NOT NULL,
[TaxAmt] [money] NOT NULL,
CONSTRAINT [PK_OrderHeader_SalesOrderID] PRIMARY KEY CLUSTERED ([SalesOrderID] ASC) ON [PRIMARY]
GO
```

You plan to perform the following tasks:
• Display all Sales.SalesOrderHeader records that contain orders that have not been shipped.
• Generate an execution plan of XML output document for the query.

You need to ensure that the following requirements are met:
• Data is returned for all fields in the Sales.SalesOrderHeader table where the shipping date is unknown.
• An XML document is provided only for this query.
• An XML document that contains the actual execution plan is returned.

Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and arrange them in the correct order.)

**Build List and Reorder:**

```
Correct Answer:
G. SET STATISTICS XML ON GO
D. SELECT * FROM Sales.SalesOrderHeader
WHERE ShipDate IS NULL GO
H. SET STATISTICS XML OFF GO
```

Explanation/Reference:

**Question 115**
Which SQL query should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.

You are a developer for a Microsoft SQL Server 2008 R2 database instance used to support a customer service application.

You create tables named complaint, customer, and product as follows:

```
CREATE TABLE [dbo].[complaint] ([ComplaintID] [int], [ProductID] [int], [CustomerID] [int], [ComplaintDate] [datetime]);
CREATE TABLE [dbo].[customer] ([CustomerID] [int], [CustomerName] [varchar](100), [Address] [varchar](200), [City] [varchar](100), [State] [varchar](50), [ZipCode] [varchar](5));
CREATE TABLE [dbo].[product] ([ProductID] [int], [ProductName] [varchar](100), [SalePrice] [money], [ManufacturerName] [varchar](100));
```

You need to write a query to sum the sales made to each customer who has made a complaint by the following entries:
• The customer name and product name
• The grand total of all sales

Which SQL query should you use?
A. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
GROUP BY GROUPING SETS ((c.CustomerName), (p.ProductName), ());
B. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY p.ProductName, ComplaintMonth;
C. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY p.ProductName, ComplaintMonth, (mm, com.ComplaintDate);
D. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE(p.ProductName, DATEPART(mm, com.ComplaintDate));
E. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
AND AVG(p.SalePrice) >= 500
F. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
AND AVG(p.SalePrice) >= 500
GROUP BY c.CustomerName;
G. SELECT c.CustomerName, COUNT(com.ComplaintID) AS Complaints
FROM customer c
INNER JOIN complaint com ON c.CustomerID = com.CustomerID
WHERE COUNT(com.ComplaintID) > 10
GROUP BY c.CustomerName;
H. SELECT c.CustomerName, COUNT(com.ComplaintID) AS Complaints
FROM customer c
INNER JOIN complaint com ON c.CustomerID = com.CustomerID
HAVING COUNT(com.ComplaintID) > 10;
I. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
GROUP BY c.CustomerName
HAVING AVG(p.SalePrice) >= 500
J. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY p.ProductName, DATEPART(mm, com.ComplaintDate);

Correct Answer: F
Explanation/Reference:

Question 116
Which two actions should you perform in sequence?
You administer a Microsoft SQL Server 2008 R2 database instance named AdventureWorks.
A user who has the db_datareader permissions on the AdventureWorks database wants to view detailed information about how the following query
will be executed:
SELECT * FROM Sales.SalesOrderHeader WHERE OnlineOrderFlag = 1 AND SubTotal > 500
You need to ensure that the user can view the following information in a data grid without executing the query:
• Estimated number of rows of output
• Estimated I/O cost
• Estimated CPU cost
Which two actions should you perform in sequence? (To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.)
Build List and Reorder:
Question 117
Which code segment should you use?
You have two tables named SalesPerson and SalesTerritory. You need to create sample data by using a Cartesian product that contains the data from
the SalesPerson and SalesTerritory tables.
Which code segment should you use?
A. SELECT p.SalesPersonId,t.Name AS [Territory]
FROM Sales.SalesPerson p
CROSS JOIN Sales.SalesTerritory t
WHERE p.TerritoryId = t.TerritoryId
B. SELECT p.SalesPersonId,t.Name AS [Territory]
FROM Sales.SalesPerson p
CROSS JOIN Sales.SalesTerritory t
C. SELECT p.SalesPersonId,t.Name AS [Territory]
FROM Sales.SalesPerson p
INNER JOIN Sales.SalesTerritory t ON p.TerritoryId = t.TerritoryId
D. SELECT p.SalesPersonId,t.Name AS [Territory]
FROM Sales.SalesPerson p
FULL JOIN Sales.SalesTerritory t ON p.TerritoryId = t.TerritoryId
Correct Answer: B
Explanation/Reference:

Question 118
Which three Transact-SQL statements should you use?
You administer a Microsoft SQL Server 2008 database that contains a table named Sales.SalesOrderHeader. The Sales.SalesOrderHeader table has the
following definition:
CREATE TABLE [Sales].[SalesOrderHeader]
([SalesOrderID] [int] IDENTITY(1,1) NOT NULL,
[OrderDate] [datetime] NOT NULL,
[DueDate] [datetime] NOT NULL,
[ShipDate] [datetime] NULL,
[Status] [tinyint] NOT NULL,
[CustomerID] [int] NOT NULL,
[SalesPersonID] [int] NULL,
[SubTotal] [money] NOT NULL,
[TaxAmt] [money] NOT NULL,
CONSTRAINT [PK_SalesOrderHeader_SalesOrderID] PRIMARY KEY CLUSTERED ([SalesOrderID] ASC) ON [PRIMARY]
GO
You want to generate an execution plan of XML output document for a query that displays all Sales.SalesOrderHeader records containing orders that
have not been shipped. You need to ensure that the following requirements are met:
• An XML document is provided only for this query.
• An XML document that contains the estimated execution plan is returned.
Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and
arrange them in the correct order.)
Build List and Reorder:
Question 119
Which Transact-SQL statements should you use?
You have a table named Customers that has an XML column named CustomerData. There are currently no indexes on the table. You use the following WHERE clause in a query:
WHERE CustomerData.exist ('[[email protected]]') = 1
You need to create indexes for the query. Which Transact-SQL statements should you use?
A. CREATE PRIMARY XML INDEX PXML_IDX_Customer ON Customers(CustomerData);
B. CREATE PRIMARY XML INDEX PXML_IDX_Customer ON Customers(CustomerData)
USING XML INDEX PXML_IDX_Customer FOR PATH;
C. CREATE CLUSTERED INDEX CL_IDX_Customer ON Customers(CustomerID);
D. CREATE PRIMARY XML INDEX PXML_IDX_Customer ON Customers(CustomerData);
USING XML INDEX PXML_IDX_Customer FOR VALUE;
Correct Answer: D
Explanation/Reference:

Question 120
Which SQL query should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You are a developer for a Microsoft SQL Server 2008 R2 database instance used to support a customer service application.
You create tables named complaint, customer, and product as follows:
CREATE TABLE [dbo].[complaint] (
ComplaintID int, ProductID int, CustomerID int, ComplaintDate datetime);
CREATE TABLE [dbo].[customer] (
CustomerID int, CustomerName varchar(100), Address varchar(200), City varchar(100), State varchar(50), ZipCode varchar(5));
CREATE TABLE [dbo].[product] (
ProductID int, ProductName varchar(100), SalePrice money, ManufacturerName varchar(100));
You need to write a query to identify all customers who have complained about products that have an average sales price of 500 or more from September 01, 2011.
Which SQL query should you use?
A. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY GROUPING SETS ((c.CustomerName, p.ProductName), ());
B. SELECT c.CustomerName, p.ProductName, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY GROUPING SETS ((c.CustomerName, p.ProductName), ());
C. SELECT c.CustomerName, COUNT(com.ComplaintID) AS Complaints
FROM customer c
INNER JOIN complaint com ON c.CustomerID = com.CustomerID
GROUP BY c.CustomerName;
Correct Answer: B
Explanation/Reference:
WHERE COUNT(com.ComplaintID) > 10
GROUP BY c.CustomerName;

D. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
AND AVG(p.SalePrice) >= 500

E. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY p.ProductName, ComplaintMonth;

F. SELECT c.CustomerName, COUNT(com.ComplaintID) AS complaints
FROM customer c
INNER JOIN complaint com ON c.CustomerID = com.CustomerID
GROUP BY c.CustomerName
HAVING COUNT(com.ComplaintID) > 10;

G. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE(p.ProductName, DATEPART(mm, com.ComplaintDate));

H. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY CUBE.c.CustomerName, COUNT(com.ComplaintID) AS complaints
FROM customer c
INNER JOIN complaint com ON c.CustomerID = com.CustomerID
GROUP BY c.CustomerName
HAVING COUNT(com.ComplaintID) > 10;

I. SELECT c.CustomerName, AVG(p.SalePrice) AS Sales
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
INNER JOIN customer c ON com.CustomerID = c.CustomerID
WHERE com.ComplaintDate > '09/01/2011'
GROUP BY c.CustomerName
HAVING AVG(p.SalePrice) >= 500

J. SELECT p.ProductName, DATEPART(mm, com.ComplaintDate) ComplaintMonth, SUM(p.SalePrice)
FROM product p
INNER JOIN complaint com ON p.ProductID = com.ProductID
GROUP BY p.ProductName, DATEPART(mm, com.ComplaintDate);

Correct Answer: I

Explanation/Reference:

Question 121
Which results should the query produce?
You have two tables named dbo.Products and dbo.PriceChange. Table dbo.Products contains ten products. Five products are priced at $20 per unit and have PriceIncrease set to 1. The other five products are priced at $10 per unit and have PriceIncrease set to 0.

You have the following query:

```
INSERT dbo.PriceChange (ProductID, Change, ChangeDate)
SELECT ProductID, inPrice − delPrice, SYSDATETIME() FROM (UPDATE dbo.Products
SET Price *= 1.1
OUTPUT inserted.ProductID, inserted.Price, deleted.Price
WHERE PriceIncrease = 1) p (ProductID, inPrice, delPrice);
```

You need to predict the results of the query. Which results should the query produce?
A. Five rows are updated in dbo.Products. No rows are inserted into dbo.PriceChange.
B. No rows are updated in dbo.Products. Five rows are inserted into dbo.PriceChange.
C. No rows are updated in dbo.Products. No rows are inserted into dbo.PriceChange.
D. Five rows are updated in dbo.Products. Five rows are inserted into dbo.PriceChange.

Correct Answer: D

Explanation/Reference:

Question 122
Which system function should you use?
You are tasked to create a table that has a column that must store the current time accurate to ten microseconds.

You need to use a system function in conjunction with the DEFAULT option in the column definition. Which system function should you use?

http://www.aoowe.com
Question 123
Which four actions should you perform in sequence?
You are a developer of a Microsoft SQL Server 2008 R2 database instance that supports a web-based order-entry application. You need to create a server-side trace that meets the following requirements:
• Captures performance information from 05:00 hours to 05:30 hours daily.
• Stores trace information in a format that can be used even while users are disconnected from the network.
Which four actions should you perform in sequence? (To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.)

Build List and Reorder:

Correct Answer:
E. Create a server-side trace by using the SQL Server Profiler tool. Configure the trace to stop at 05:30 hours.
C. Save the trace information to a trace file.
D. Export the trace file to a SQL script.
F. Create a SQL Server Agent job by using the exported SQL script. Schedule the job to start at 05:00 hours daily.

Explanation/Reference:

Question 124
Which SQL statement should you use?
You administer a Microsoft SQL Server 2008 database for an inventory management system. The application contains a product table that has the following definition:

```sql
CREATE TABLE [Production].[Product]
([ProductID] [int] IDENTITY(1,1) NOT NULL,
 [Name] [nvarchar](50) NOT NULL,
 [ProductNumber] [nvarchar](25) NOT NULL,
 [Color] [nvarchar](15) NULL,
 [Class] [nchar](2) NULL,
 [Style] [nchar](2) NULL, [Active] [bit] NOT NULL,
 [ModifiedDate] [datetime] NOT NULL,
CONSTRAINT [PK_Product_ProductID] PRIMARY KEY CLUSTERED ([ProductID] ASC) ON [PRIMARY]) ON [PRIMARY]
```

You want to add a new field to the Product table to meet the following requirements:
• Allows user-specified information that will be added to records in the Product table.
• Supports the largest storage size needed for the field.
• Uses the smallest data type necessary to support the domain of values that will be entered by users.
You need to add a field named `User_Data_1` to support integer values ranging from -10 through 10.

Which SQL statement should you use?
A. ALTER TABLE [Production].[Product] ADD [User_Data_1] VARCHAR(100)
B. ALTER TABLE [Production].[Product] ADD [User_Data_1] BIGINT
C. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(11,6)
D. ALTER TABLE [Production].[Product] ADD [User_Data_1] INT
E. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATETIME
F. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLINT
G. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLE心境
H. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLMONEY
I. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(5,6)
J. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATETIME2
K. ALTER TABLE [Production].[Product] ADD [User_Data_1] MONEY
L. ALTER TABLE [Production].[Product] ADD [User_Data_1] BIT
M. ALTER TABLE [Production].[Product] ADD [User_Data_1] CHAR(100)
N. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATE
O. ALTER TABLE [Production].[Product] ADD [User_Data_1] TINYINT
P. ALTER TABLE [Production].[Product] ADD [User_Data_1] NVARCHAR(100)
Q. ALTER TABLE [Production].[Product] ADD [User_Data_1] NCHAR(100)
R. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(6,11)

Correct Answer: F
Explanation/Reference:

Question 125
Which code segment should you use?
You need to round the value 1.75 to the nearest whole number.
Which code segment should you use?
A. Select ROUND(1.75,1.0)
B. Select ROUND(1.75,2)
C. Select ROUND(1.75,0)
D. Select ROUND(1.75,2.0)

Correct Answer: C
Explanation/Reference:

Question 126
Which Transact-SQL statements should you use?
You are the database developer for an order-processing application. The database has the following tables:
CREATE TABLE dbo.Product (ProdID INT NOT NULL PRIMARY KEY, ProdName VARCHAR(100) NOT NULL, SalePrice MONEY NOT NULL, ManufacturerName VARCHAR(100) NOT NULL);
CREATE TABLE dbo.Customer (CustID INT NOT NULL PRIMARY KEY, CustName VARCHAR(100) NOT NULL, CustAddress VARCHAR(200) NOT NULL, CustCity VARCHAR(100) NOT NULL, CustState VARCHAR(50) NOT NULL, CustPostalCode VARCHAR(5) NOT NULL);
CREATE TABLE dbo.[Order] (OrderID INT NOT NULL PRIMARY KEY, ProdID INT NOT NULL REFERENCES dbo.Product(ProdId), CustID INT NOT NULL REFERENCES dbo.Customer(CustId), OrderDate DATETIME NOT NULL);

You need to ensure that the following requirements are met:
• Data is loaded into the tables.
• Data that has been inserted will be removed if any statement fails.
• No open transactions are performed after the batch has executed.

Which Transact-SQL statements should you use?
A. BEGIN TRY
SAVE TRANSACTION DataLoad
INSERT INTO dbo.Product VALUES (1, 'Chair', 146.58, 'Contoso'), (2, 'Table', 458.36, 'Contoso'), (3, 'Cabinet', 398.17, 'Northwind Traders'), (4, 'Desk', 1483.25, 'Northwind Traders');
INSERT INTO dbo.Customer VALUES(1, 'John Smith', '200 West 2nd St', 'Seattle', 'WA', '98060'), (2, 'Bob Jones', '300 Main St', 'Portland', 'OR', '97211'), (3, 'Fred Thomson', '100 Park Ave', 'San Francisco', 'CA', '94172');
COMMIT TRANSACTION DataLoad;
END TRY
BEGIN CATCH
IF @@TRANCOUNT > 0
BEGIN
ROLLBACK TRANSACTION DataLoad;
END
BEGIN TRY
BEGIN TRANSACTION
INSERT INTO dbo.Product
VALUES (1, 'Chair', 146.58, 'Contoso'),
(2, 'Table', 458.36, 'Contoso'),
(3, 'Cabinet', 398.17, 'Northwind Traders'),
(4, 'Desk', 1483.25, 'Northwind Traders');
INSERT INTO dbo.Customer
VALUES (1, 'John Smith', '200 West 2nd St', 'Seattle', 'WA', '98060'),
(2, 'Bob Jones', '300 Main St', 'Portland', 'OR', '97211'),
(3, 'Fred Thomson', '100 Park Ave', 'San Francisco', 'CA', '94172');
INSERT INTO dbo.[Order]
VALUES (1, 1, 2, '09/15/2011'),
(2, 4, 2, '09/15/2011'),
(3, 2, 1, '08/17/2011'),
(4, 2, 3, '07/01/2011'),
(5, 3, 3, '10/02/2011');
COMMIT TRANSACTION;
END TRY
BEGIN CATCH
IF @@TRANCOUNT > 0
BEGIN
ROLLBACK TRANSACTION;
END;
END CATCH;

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO dbo.Product
VALUES (1, 'Chair', 46.58, 'Contoso'),
(2, 'Table', 458.36, 'Contoso'),
(3, 'Cabinet', 398.17, 'Northwind Traders'),
(4, 'Desk', 1483.25, 'Northwind Traders');
INSERT INTO dbo.Customer
VALUES (1, 'John Smith', '200 West 2nd St', 'Seattle', 'WA', '98060'),
(2, 'Bob Jones', '300 Main St', 'Portland', 'OR', '97211'),
(3, 'Fred Thomson', '100 Park Ave', 'San Francisco', 'CA', '94172');
INSERT INTO dbo.[Order]
VALUES (1, 1, 2, '09/15/2011'),
(2, 4, 2, '09/15/2011'),
(3, 2, 1, '08/17/2011'),
(4, 2, 3, '07/01/2011'),
(5, 3, 3, '10/02/2011');
SAVE TRANSACTION customers;
END TRY
BEGIN CATCH
IF @@TRANCOUNT > 0
BEGIN
ROLLBACK TRANSACTION customers;
END;
END CATCH;

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO dbo.Product
VALUES (1, 'Chair', 146.58, 'Contoso'),
(2, 'Table', 458.36, 'Contoso'),
(3, 'Cabinet', 398.17, 'Northwind Traders'),
(4, 'Desk', 1483.25, 'Northwind Traders');
INSERT INTO dbo.Customer
VALUES (1, 'John Smith', '200 West 2nd St', 'Seattle', 'WA', '98060'),
(2, 'Bob Jones', '300 Main St', 'Portland', 'OR', '97211'),
(3, 'Fred Thomson', '100 Park Ave', 'San Francisco', 'CA', '94172');
INSERT INTO dbo.[Order]
VALUES (1, 1, 2, '09/15/2011'),
(2, 4, 2, '09/15/2011'),
(3, 2, 1, '08/17/2011'),
(4, 2, 3, '07/01/2011'),
(5, 3, 3, '10/02/2011');
SAVE TRANSACTION customers;
END TRY
BEGIN CATCH
IF @@TRANCOUNT > 0
BEGIN
ROLLBACK TRANSACTION customers;
END;
END CATCH;

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO dbo.Product
VALUES (1, 'Chair', 146.58, 'Contoso'),
(2, 'Table', 458.36, 'Contoso'),
(3, 'Cabinet', 398.17, 'Northwind Traders'),
(4, 'Desk', 1483.25, 'Northwind Traders');
INSERT INTO dbo.Customer
VALUES (1, 'John Smith', '200 West 2nd St', 'Seattle', 'WA', '98060'),
(2, 'Bob Jones', '300 Main St', 'Portland', 'OR', '97211'),
(3, 'Fred Thomson', '100 Park Ave', 'San Francisco', 'CA', '94172');
INSERT INTO dbo.[Order]
VALUES (1, 1, 2, '09/15/2011'),
(2, 4, 2, '09/15/2011'),
(3, 2, 1, '08/17/2011'),
(4, 2, 3, '07/01/2011'),
(5, 3, 3, '10/02/2011');
SAVE TRANSACTION customers;
END TRY
BEGIN CATCH
IF @@TRANCOUNT > 0
BEGIN
ROLLBACK TRANSACTION customers;
END;
END CATCH;

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO dbo.Product
VALUES (1, 'Chair', 146.58, 'Contoso'),
(2, 'Table', 458.36, 'Contoso'),
(3, 'Cabinet', 398.17, 'Northwind Traders'),
(4, 'Desk', 1483.25, 'Northwind Traders');
INSERT INTO dbo.Customer
VALUES (1, 'John Smith', '200 West 2nd St', 'Seattle', 'WA', '98060'),
(2, 'Bob Jones', '300 Main St', 'Portland', 'OR', '97211'),
(3, 'Fred Thomson', '100 Park Ave', 'San Francisco', 'CA', '94172');
INSERT INTO dbo.[Order]
VALUES (1, 1, 2, '09/15/2011'),
(2, 4, 2, '09/15/2011'),
(3, 2, 1, '08/17/2011'),
(4, 2, 3, '07/01/2011'),
(5, 3, 3, '10/02/2011');
SAVE TRANSACTION customers;
END TRY
BEGIN CATCH
IF @@TRANCOUNT > 0
BEGIN
ROLLBACK TRANSACTION customers;
END;
END CATCH;

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO dbo.Product
VALUES (1, 'Chair', 146.58, 'Contoso'),
(2, 'Table', 458.36, 'Contoso'),
(3, 'Cabinet', 398.17, 'Northwind Traders'),
(4, 'Desk', 1483.25, 'Northwind Traders');
INSERT INTO dbo.Customer
VALUES (1, 'John Smith', '200 West 2nd St', 'Seattle', 'WA', '98060'),
(2, 'Bob Jones', '300 Main St', 'Portland', 'OR', '97211'),
(3, 'Fred Thomson', '100 Park Ave', 'San Francisco', 'CA', '94172');
INSERT INTO dbo.[Order]
VALUES (1, 1, 2, '09/15/2011'),
(2, 4, 2, '09/15/2011'),
(3, 2, 1, '08/17/2011'),
(4, 2, 3, '07/01/2011'),
(5, 3, 3, '10/02/2011');
SAVE TRANSACTION customers;
END TRY
BEGIN CATCH
IF @@TRANCOUNT > 0
BEGIN
ROLLBACK TRANSACTION customers;
END;
END CATCH;

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO dbo.Product
VALUES (1, 'Chair', 146.58, 'Contoso'),
(2, 'Table', 458.36, 'Contoso'),
(3, 'Cabinet', 398.17, 'Northwind Traders'),
(4, 'Desk', 1483.25, 'Northwind Traders');
INSERT INTO dbo.Customer
VALUES (1, 'John Smith', '200 West 2nd St', 'Seattle', 'WA', '98060'),
(2, 'Bob Jones', '300 Main St', 'Portland', 'OR', '97211'),
(3, 'Fred Thomson', '100 Park Ave', 'San Francisco', 'CA', '94172');
INSERT INTO dbo.[Order]
VALUES (1, 1, 2, '09/15/2011'),
(2, 4, 2, '09/15/2011'),
(3, 2, 1, '08/17/2011'),
(4, 2, 3, '07/01/2011'),
(5, 3, 3, '10/02/2011');
SAVE TRANSACTION customers;
END TRY
BEGIN CATCH
IF @@TRANCOUNT > 0
BEGIN
ROLLBACK TRANSACTION customers;
END;
END CATCH;

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO dbo.Product
VALUES (1, 'Chair', 146.58, 'Contoso'),
(2, 'Table', 458.36, 'Contoso'),
(3, 'Cabinet', 398.17, 'Northwind Traders'),
(4, 'Desk', 1483.25, 'Northwind Traders');
INSERT INTO dbo.Customer
VALUES (1, 'John Smith', '200 West 2nd St', 'Seattle', 'WA', '98060'),
(2, 'Bob Jones', '300 Main St', 'Portland', 'OR', '97211'),
(3, 'Fred Thomson', '100 Park Ave', 'San Francisco', 'CA', '94172');
INSERT INTO dbo.[Order]
VALUES (1, 1, 2, '09/15/2011'),
(2, 4, 2, '09/15/2011'),
(3, 2, 1, '08/17/2011'),
(4, 2, 3, '07/01/2011'),
(5, 3, 3, '10/02/2011');
SAVE TRANSACTION customers;
END TRY
BEGIN CATCH
IF @@TRANCOUNT > 0
BEGIN
ROLLBACK TRANSACTION customers;
END;
END CATCH;
Correct Answer: BG
Explanation/Reference:

Question 127
Which three actions should you perform in sequence?
You are a developer for a Microsoft SQL Server 2008 R2 database instance. You want to add functionality to an existing application that uses the Microsoft SQL Server Profiler tool to capture trace information. You need to ensure that the following requirements are met:
• Users are able to use the SQL Server Profiler tool.
• Users are able to capture trace information and read saved trace files.
• Users are granted the minimum permissions to achieve these goals.
Which three actions should you perform in sequence? (To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.)

Build List and Reorder:

Correct Answer:

Explanation/Reference:

Question 128
Which Transact-SQL statement or statements should you use?
You are a database developer responsible for maintaining an application. The application has a table named Programs that has the following definition:
```
CREATE TABLE [dbo].[Customers](
 [ID] int NOT NULL IDENTITY(1,1),
 [Name] varchar(100) NOT NULL,
 [Address] varchar(255) NOT NULL,
 [City] varchar(100) NOT NULL,
 [State] char(2) NOT NULL,
 [Postal] varchar(5) NOT NULL,
 [Priority] char(1) NOT NULL,
 [Active] bit NOT NULL
) GO
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT PK_Customers PRIMARY KEY NONCLUSTERED (Name) GO
```
You need to modify the Customers table to meet the following requirements:
• ID must be the Primary Key.
• The clustered index must be on the ID column.
• The Active column must have a default value of 1, and must allow values of only 0 or 1.
• The Priority column must have values of “a”, “b”, or “c”.
• The Postal column must contain a correctly formatted five-digit numeric Postal Code.
Which Transact-SQL statement or statements should you use?
A. ALTER TABLE [dbo].[Customers] ADD CONSTRAINT PK_Customers PRIMARY KEY CLUSTERED (ID)
B. ALTER TABLE [dbo].[Customers] ADD CONSTRAINT CK_Priority CHECK ([Priority] IN (‘a’, ‘b’, ‘c’))
C. ALTER TABLE [dbo].[Customers] ADD CONSTRAINT CK_Postal CHECK ([Postal] LIKE ‘[0-9][0-9][0-9][0-9][0-9]’)
C. ALTER TABLE [dbo].[Customers] ADD CONSTRAINT PK_Customers PRIMARY KEY CLUSTERED (ID)
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT CK_Priority VALIDATE (Priority IN ('a', 'b', 'c'))
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT DF_Active DEFAULT (1) FOR [Active]
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT CK_Active VALIDATE ([Active] IN (0,1))
D. ALTER TABLE [dbo].[Customers] DROP CONSTRAINT PK_Customers
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT PK_Customers PRIMARY KEY NONCLUSTERED (ID)
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT CK_Priority CHECK ([Priority] IN ('a', 'b', 'c'))
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT CK_Postal CHECK ([Postal] LIKE '[0-9][0-9][0-9][0-9][0-9]')
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT DF_Active DEFAULT (1) FOR [Active]
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT CK_Active CHECK ([Active] IN (0,1))
E. ALTER TABLE [dbo].[Customers] DROP CONSTRAINT PK_Customers
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT PK_Customers PRIMARY KEY (ID)
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT CK_DataChecks CHECK ([Priority] IN 'abc' AND ISNUMERIC([Postal]) = 1 AND LEN([Postal]) = 5 AND [Active] IN (0,1))
F. ALTER TABLE [dbo].[Customers] DROP CONSTRAINT PK_Customers
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT PK_Customers PRIMARY KEY (ID)
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT CK_DataChecks CHECK ([Priority] = 'abc' AND LEN([Postal]) = 5 AND [Active] IN (0,1))
G. ALTER TABLE [dbo].[Customers] DROP CONSTRAINT PK_Customers
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT PK_Customers PRIMARY KEY (ID)
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT CK_DataChecks CHECK ([Priority] IN 'abc' AND ISNUMERIC([Postal]) = 1 AND [Active] IN (0,1))
H. ALTER TABLE [dbo].[Customers] DROP CONSTRAINT PK_Customers
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT PK_Customers PRIMARY KEY (ID)
ALTER TABLE [dbo].[Customers] ADD CONSTRAINT CK_DataChecks CHECK ([Priority] IN 'abc' AND ISNUMERIC([Postal]) = 1 AND [Active] IN (0,1))

Correct Answer: BE

Explanation/Reference:

Question 129
Which Transact-SQL statement should you use?
You administer a Microsoft SQL Server 2008 database that contains a table named dbo.[order]. There are no triggers on the table. You plan to create a stored procedure that will have the following parameters:
•@ProdId int
•@CustId int
You need to ensure that the following requirements are met:
The OrderID and ProdID values of each modified row are captured into a local table variable before data is modified.
The ProdID is modified to @ProdId where CustID is equal to @CustID.
Which Transact-SQL statement should you use?
A. DECLARE @OrderIDs TABLE (OrderID INT, ProdID INT);
   UPDATE dbo.[order]
   SET ProdID = @ProdId
   OUTPUT DELETED.OrderID, DELETED.ProdID
   INTO @OrderIDs WHERE CustID = @CustId;
B. DECLARE @OrderIDs TABLE (OrderID INT, ProdID INT);
   INSERT INTO @OrderIDs
   SELECT SCOPE_IDENTITY(OrderId), SCOPE_IDENTITY(ProdId);
   UPDATE dbo.[order]
   SET CustID = @CustId,
   OUTPUT INSERTED.OrderID, INSERTED.ProdID
   WHERE CustID = @CustId;
C. DECLARE @OrderIDs TABLE (OrderID INT, ProdID INT);
   UPDATE dbo.[order]
   SET ProdID = @ProdId
   OUTPUT INSERTED.OrderID, INSERTED.ProdID
   WHERE CustID = @CustId;
D. DECLARE @OrderIDs TABLE (OrderID INT, ProdID INT);
   INSERT INTO @OrderIDs
   SELECT SCOPE_IDENTITY(OrderId), SCOPE_IDENTITY(ProdId);
   UPDATE dbo.[order]
   SET CustID = @CustId,
   OUTPUT INSERTED.OrderID, INSERTED.ProdID
   WHERE CustID = @CustId;
E. DECLARE @OrderIDs TABLE (OrderID INT, ProdID INT);
   UPDATE dbo.[order]
   SET ProdID = @ProdId
   OUTPUT SELECT d.[OrderId], d.[ProdId]
   FROM DELETED d
   INTO @OrderIDs
   WHERE CustID = @CustId;
F. DECLARE @OrderIDs TABLE (OrderID INT, ProdID INT);
   UPDATE dbo.[order]
   SET ProdID = @ProdId
   OUTPUT SELECT d.[OrderId], d.[ProdId]
   FROM DELETED d
   INTO @OrderIDs
   WHERE CustID = @CustId;

http://www.aoowe.com
G. UPDATE [order]
SET ProdID = @ProdId
OUTPUT DELETED.OrderID, DELETED.ProdID
INTO @OrderIDs (OrderID INT, ProdID INT)
WHERE CustID = @CustId;
H. DECLARE @OrderIDs TABLE (OrderID INT, ProdID INT);
UPDATE [order]
SET ProdID = @CustId
OUTPUT #INSERTED.OrderID, #INSERTED.ProdID
INTO @OrderIDs
WHERE CustID = @CustId;

Correct Answer: AF
Explanation/Reference:

Question 130
Which cmdlet should you use?
You have a table named Inventory. You open a Microsoft Windows PowerShell session at the following location by using the SQL Server Windows PowerShell provider.
PS SQLSERVER:SQLCONTOSODEFAULTDatabasesReportServerTablesdbo.InventoryColumns>
Using the SQL Server Windows PowerShell provider, you need to query all the columns in the table. Which cmdlet should you use?
A. Get-ChildItem
B. Get-ItemProperty
C. Get-Location
D. Get-Item

Correct Answer: A
Explanation/Reference:

Question 131
What should you do?
You need to ensure that tables are not dropped from your database. What should you do?
A. Create a DML trigger that contains ROLLBACK.
B. Create a DML trigger that contains COMMIT.
C. Create a DDL trigger that contains COMMIT.
D. Create a DDL trigger that contains ROLLBACK.

Correct Answer: D
Explanation/Reference:

Question 132
Which resource should you investigate first?
You notice that a database server is responding slowly to queries. You run the following dynamic management views (DMV) query on the server.
SELECT TOP (10) wait_type, wait_time_ms FROM sys.dm_os_wait_stats ORDER BY wait_time_ms DESC;
The query returns a top wait type of SOS_SCHEDULER_YIELD. You need to identify what is causing the server response issues. Which resource should you investigate first?
A. Memory
B. Network
C. CPU
D. Disk

Correct Answer: C
Explanation/Reference:

Question 133
Which Transact-SQL query should you use?
You are a database developer writing reports for a sales management application. A customer table has the following definition:
CREATE TABLE customer
(CustomerID INT,
FirstName VARCHAR(30),
LastName VARCHAR(50),
StreetAddress VARCHAR(100),
City VARCHAR(100),
[State] VARCHAR(25),
PostalCode VARCHAR(5));
An order table has the following definition:
CREATE TABLE [order]
(OrderID INT,
ProductID INT,
CustomerID INT,
OrderDate DATETIME);
You need to write a report that contains the following columns:

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CustomerID</td>
<td>The CustomerID</td>
</tr>
<tr>
<td>FullName</td>
<td>Concatenated first and last names</td>
</tr>
<tr>
<td>PostalCode</td>
<td>Customer's Postal Code</td>
</tr>
<tr>
<td>OrderCount</td>
<td>Number of orders for this customer</td>
</tr>
<tr>
<td>EarliestOrderDate</td>
<td>The OrderDate from the earliest (by OrderDate) order for this customer</td>
</tr>
</tbody>
</table>

You also need to ensure that the report meets the following requirements:

- Contains only customers who have placed orders
- Contains only customers who have Postal Codes beginning with 89
- Returns only one record for each customer
- The report is ordered by the CustomerID in ascending order

Which Transact-SQL query should you use? (Choose 2 – Complete)

A. SELECT c.CustomerID, c.FirstName + ' ' + c.LastName AS FullName, c.PostalCode, COUNT(*) AS OrderCount, MIN(o.OrderDate) AS EarliestOrderDate
FROM Customer c
INNER JOIN [order] o ON CustomerId = o.CustomerId
WHERE c.PostalCode LIKE '89%'
GROUP BY c.CustomerID
ORDER BY c.CustomerID

B. SELECT c.CustomerID, c.FirstName + ' ' + c.LastName AS FullName, c.PostalCode, COUNT(*) AS OrderCount, MIN(o.OrderDate) AS EarliestOrderDate
FROM Customer c
INNER JOIN [order] o ON CustomerId = o.CustomerId
WHERE c.PostalCode = '89%
GROUP BY c.CustomerId, c.FirstName + ' ' + c.LastName, c.PostalCode, o.CustomerId
ORDER BY FullName

C. WITH FullNames AS
(SELECT CustomerId, FirstName + ' ' + LastName AS FullName
FROM customer)
SELECT c.CustomerID, fn.FullName, c.PostalCode, COUNT(*) AS OrderCount, MIN(o.OrderDate) AS EarliestOrderDate
FROM Customer c
INNER JOIN FullNames fn ON fn.CustomerID = c.CustomerID
INNER JOIN [order] o ON c.CustomerId = o.CustomerId
WHERE CustomerID PostalCode LIKE '89%
GROUP BY c.CustomerId, fn.FullName, c.PostalCode, o.CustomerId
ORDER BY c.

D. SELECT c.CustomerID, c.FirstName + ' ' + c.LastName AS FullName, c.PostalCode, COUNT(*) AS OrderCount, MIN(o.OrderDate) AS EarliestOrderDate
FROM Customer c
LEFT OUTER JOIN [order] o ON c.CustomerId = o.CustomerId
WHERE c.PostalCode LIKE '89%
GROUP BY c.CustomerId, c.FirstName + ' ' + c.LastName, c.PostalCode, o.CustomerId
ORDER BY c.CustomerId

E. WITH FullNames AS
(SELECT CustomerId, FirstName + ' ' + LastName AS FullName
FROM customer)
SELECT c.CustomerID, fn.FullName, c.PostalCode, COUNT(*) AS OrderCount, MIN(o.OrderDate) AS EarliestOrderDate
FROM Customer c
INNER JOIN FullNames fn ON fn.CustomerID = c.CustomerID
INNER JOIN [order] o ON c.CustomerId = o.CustomerId
WHERE CustomerID PostalCode LIKE '89%
GROUP BY c.CustomerId, fn.FullName, c.PostalCode, o.CustomerId
ORDER BY c.CustomerId

F. SELECT c.CustomerID, c.FirstName + ' ' + c.LastName AS FullName, c.PostalCode, COUNT(*) AS OrderCount, MIN(o.OrderDate) AS EarliestOrderDate
FROM Customer c
INNER JOIN [order] o ON CustomerId = o.CustomerId
WHERE c.PostalCode LIKE '89%
GROUP BY c.CustomerId, c.FirstName + ' ' + c.LastName, c.PostalCode, o.CustomerId
ORDER BY c.CustomerId

G. WITH FullNames AS
(SELECT CustomerId, FirstName + ' ' + LastName AS FullName
FROM customer)
SELECT c.CustomerID, fn.FullName, c.PostalCode, COUNT(*) AS OrderCount, MIN(o.OrderDate) AS EarliestOrderDate
FROM Customer c
INNER JOIN FullNames fn ON fn.CustomerID = c.CustomerID
ORDER BY c.
INNER JOIN [order] o ON c.CustomerId = o.CustomerId
GROUP BY c.CustomerId, fn.FullName, c.PostalCode, o.CustomerId
ORDER BY c.CustomerId

Correct Answer: AC
Explanation/Reference:

Question 134
Which Transact-SQL statement should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You administer a Microsoft SQL Server 2008 database named AdventureWorks that contains a table named Production.Product. The table contains a primary key named PK_Product_ProductID and a non-clustered index named AK_Product_ProductNumber. Both indexes have been created on a single primary partition.
The table has the following definition:
CREATE TABLE [Production].[Product](
[ProductID] [int] IDENTITY(1,1) NOT NULL,
[Name] [nvarchar](50) NOT NULL,
[ProductNumber] [nvarchar](25) NOT NULL,
[Color] [nvarchar](15) NULL,
[Class] [nchar](2) NULL,
[Style] [nchar](2) NULL,
[ModifiedDate] [datetime] NOT NULL,
GO
The index has the following definition:
GO
The Production.Product table contains 1 million rows.
You want to ensure that data retrieval takes the minimum amount of time when the queries executed against the Production.Product table are ordered by product number or filtered by class. You need to find out the degree of fragmentation for the indexes on the Production.Product table.
Which Transact-SQL statement should you use?
A. ALTER STATISTICS Production.Product
B. SELECT * FROM sys.indexes where name=N'Production.Product'
C. CREATE STATISTICS ProductClass_Sts ON Production.Product(Name, ProductNumber, Class) WHERE Class is not null
D. SELECT * FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID(N'Production.Product'),NULL, NULL, NULL)
E. SELECT * FROM STATS WHERE name='AK_Product_ProductNumber'
F. DBCC SHOW_STATISTICS ('Production.Product', AK_Product_ProductNumber)
G. UPDATE INDEX AK_Product_ProductNumber ON Production.Product SET (STATISTICS_NORECOMPUTE = ON)
H. ALTER INDEX AK_Product_ProductNumber ON Production.Product REBUILD
I. SELECT * FROM sys.dm_db_index_operational_stats (DB_ID(), OBJECT_ID(N'Production.Product'),NULL, NULL)
J. SELECT * FROM SYS.STATS WHERE name='AK_Product_ProductNumber'
K. EXEC sys.sp_configure 'index create memory', 1
L. CREATE STATS ProductClass_StatsON Production.Product (Name, ProductNumber, Class) WHERE Class is not null WITH SAMPLE 100 PERCENT
M. ALTER DATABASE [AdventureWorks] SET AUTO_UPDATE_STATISTICS ON
N. ALTER INDEX AK_Product_ProductNumber ON Production.Product REBUILD Partition = 1
O. UPDATE STATISTICS Production.Product
P. ALTER INDEX AK_Product_ProductNumber ON Production.Product REORGANIZE
Q. CREATE STATISTICS ProductClass_Sts ON Production.Product (Name, ProductNumber, Class) WHERE Class <> null

Correct Answer: D
Explanation/Reference:

Question 135
Which Transact-SQL statement should you use?
A table named Contacts includes a column named SmtpAddress. You must develop a report that returns e-mail addresses from the Contacts table that have the following format: at least one character, the at sign (@), at least one character, and then ".org". You need to return data that meets the requirements.
Which Transact-SQL statement should you use?
A. select * from Contacts where SmtpAddress like '%@%.org'
B. select * from Contacts where SmtpAddress like '_%@_%.org'
C. select * from Contacts where SmtpAddress like '*@*.org'
D. select * from Contacts where SmtpAddress like '*@%[].org'

Correct Answer: B
Explanation/Reference:

Question 136
Which expression should you use?
You have a column named TelephoneNumber that stores numbers as varchar(20).
You need to write a query that returns the first three characters of a telephone number.
Which expression should you use?
A. CHARINDEX('0-9', PhoneNumber, 3)
Question 137
Which Transact-SQL statement should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You administer a Microsoft SQL Server 2008 database named AdventureWorks that contains a table named Production.Product. The table contains a primary key named PK_Product_ProductID and a non-clustered index named AK_Product_ProductNumber. Both indexes have been created on a single primary partition. The table has the following definition:
CREATE TABLE [Production].[Product]([ProductID] [int] IDENTITY(1,1) NOT NULL,
[Name] [nvarchar](50) NOT NULL,
[ProductNumber] [nvarchar](25) NOT NULL,
[Color] [nvarchar](15) NULL,
[Class] [nchar](2) NULL,
[ModifiedDate] [datetime] NOT NULL,
CONSTRAINT [PK_Product_ProductID] PRIMARY KEY CLUSTERED ([ProductID] ASC) ON [PRIMARY]) ON [PRIMARY]
GO
The index has the following definition:
GO
The Production.Product table contains 1 million rows.
You want to ensure that data retrieval takes the minimum amount of time when the queries executed against the Production.Product table are ordered by product number or filtered by class. You need to build new query optimization statistics on the Production.Product table to support queries that filter data rows where the class field has a null value. Which Transact-SQL statement should you use?
A. DBCC SHOW_STATISTICS ('Production.Product', AK_Product_ProductNumber)
B. EXEC sys.sp_configure 'index create memory', 1
C. ALTER INDEX AK_Product_ProductNumber ON Production.Product REORGANIZE
D. ALTER INDEX AK_Product_ProductNumber ON Production.Product REBUILD Partition = 1
E. CREATE STATS ProductClass_Stats ON Production.Product (Name, ProductNumber, Class) WHERE Class is not null WITH SAMPLE 100 PERCENT
F. SELECT * FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID(N'Production.Product'),NULL, NULL, NULL)
G. UPDATE INDEX AK_Product_ProductNumber ON Production.Product SET (STATISTICS_NORECOMPUTE = ON)
H. UPDATE STATISTICS Production.Product
I. CREATE STATISTICS ProductClass_Stats ON Production.Product (Name, ProductNumber, Class) WHERE Class <> null
J. SELECT * FROM sys.dm_db_index_operational_stats (DB_ID(), OBJECT_ID(N'Production.Product'),NULL, NULL)
K. SELECT * FROM SYS.STATS WHERE name='AK_Product_ProductNumber'
L. ALTER INDEX AK_Product_ProductNumber ON Production.Product REBUILD
M. ALTER STATISTICS Production.Product
N. CREATE STATISTICS ProductClass_Stats ON Production.Product (Name, ProductNumber, Class) WHERE Class is not null
O. SELECT * FROM sys.indexes where name='AK_Product_ProductNumber'
P. ALTER DATABASE [AdventureWorks] SET AUTO_UPDATE_STATISTICS ON
Q. SELECT * FROM STATS WHERE name='AK_Product_ProductNumber'

Correct Answer: N
Explanation:

Question 138
Which event should you use?
You are using SQL Server Profiler to gather deadlock information. You need to capture an XML description of a deadlock. Which event should you use?
A. Showplan XML
B. Lock:Deadlock
C. Deadlock Graph
D. Lock:Deadlock Chain

Correct Answer: C
Explanation:

Question 139
Which Transact-SQL statement or statements should you use?
You develop a new stored procedure for an existing database. You create two tables named Customer and Orders. The tables have the following definitions:
CREATE TABLE Customer
(CustomerID int NOT NULL PRIMARY KEY CLUSTERED,
CustomerName nvarchar(255) NOT NULL,
Correct Answer: D
Explanation/Reference:
Question 140
Which three Transact-SQL statements should you use?
You administer a Microsoft SQL Server 2008 instance that has two databases. The first database named AdventureWorks contains a table named Sales.SalesOrderDetail. The Sales.SalesOrderDetail table has the following definition:
CREATE TABLE [dbo].[SalesOrderDetail] (SalesOrderDetailID int IDENTITY(1,1) NOT NULL, ProductID int NOT NULL, OrderQty smallint NOT NULL, OrderDate datetime NOT NULL, CONSTRAINT [PK_SalesOrderDetail] PRIMARY KEY CLUSTERED ([SalesOrderDetailID] ASC)) ON [PRIMARY]
The second database named AdventureWorksDW contains a table named dbo.SalesOrderSummary. The dbo.SalesOrderSummary table has the following definition:
CREATE TABLE [dbo].[SalesOrderSummary] (ProductID int NOT NULL, OrderQty int NOT NULL, OrderYear int NOT NULL, CONSTRAINT [PK_SalesOrderSummary] PRIMARY KEY CLUSTERED (OrderYear ASC, ProductID ASC)) ON [PRIMARY]
You plan to migrate sales data for the year 2011 from the SalesOrderDetail table into the SalesOrderSummary table. You need to ensure that the following requirements are met:
• All data is removed from the SalesOrderSummary table before migrating data.
• A subset of data is migrated from the SalesOrderDetail table in the AdventureWorks database to the SalesOrderSummary table in the AdventureWorksDW database.
• Migrated data summarizes order quantity in one row per product for the year 2011.
Which three Transact-SQL statements should you use? (To answer, move the appropriate statements from the list of statements to the answer area and
arrange them in the correct order.)

Build List and Record:

<table>
<thead>
<tr>
<th>Ordered List Title</th>
<th>Answer Choices Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USE AdventureWorksDW GO</td>
</tr>
<tr>
<td></td>
<td>TRUNCATE TABLE dbo.SalesOrderSummary GO</td>
</tr>
<tr>
<td></td>
<td>INSERT dbo.SalesOrderSummary (ProductID, OrderQty, OrderYear) AS OrderYear</td>
</tr>
<tr>
<td></td>
<td>FROM AdventureWorks.Sales.SalesOrderDetail WHERE Year(OrderYear)=2011 GROUP BY ProductID HAVING YEAR(OrderYear)=2011 GO</td>
</tr>
</tbody>
</table>

Correct Answer:

USE AdventureWorksDW GO
TRUNCATE TABLE dbo.SalesOrderSummary GO

INSERT dbo.SalesOrderSummary (ProductID, OrderQty, OrderYear) AS OrderYear
FROM AdventureWorks.Sales.SalesOrderDetail
WHERE Year(OrderYear)=2011 GROUP BY ProductID HAVING YEAR(OrderYear)=2011 GO

Explanation/Reference:

Question 141
Which method should you use?
A database contains tables named Sales and SalesArchive. SalesArchive contains historical sales data. You configure Change Tracking on the Sales table. The minimum valid version of the Sales table is 10.
You need to write a query to export only sales data that changed since version 10, including the primary key of deleted rows.
Which method should you use?
A. FROM Sales RIGHT JOIN CHANGETABLE (CHANGES Sales, 10) AS C …
B. FROM Sales INNER JOIN CHANGETABLE (CHANGES Sales, 10) AS C …
C. FROM Sales RIGHT JOIN CHANGETABLE (CHANGES SalesArchive, 10) AS C …
D. FROM Sales INNER JOIN CHANGETABLE (CHANGES SalesArchive, 10) AS C …

Correct Answer: A
Explanation/Reference:

Question 142
Which query hint should you use?
You administer a Microsoft SQL Server 2008 database that contains a stored procedure named dbo.SalesOrderDetails. The stored procedure has following definition:
CREATE PROCEDURE dbo.SalesOrderDetails @CustomerID int, @OrderDate datetime, @SalesOrderID int
AS
SELECT h.SalesOrderID, h.OrderDate, d.OrderQty, d.ProductID
FROM Sales.SalesOrderHeader h
INNER JOIN Sales.SalesOrderDetail d
ON d.SalesOrderID = h.SalesOrderID
WHERE h.CustomerID = @CustomerID or h.OrderDate > @OrderDate or h.SalesOrderID > @SalesOrderID
GO

Parameter values passed to the stored procedure largely vary. You discover that the stored procedure executes quickly for some parameters but slowly for other parameters. You need to ensure that the query plan generated is optimized to provide the most consistent execution times for any set of parameters passed to the stored procedure.

Which query hint should you use?
A. OPTION (KEEP PLAN)
B. OPTION (KEEPFIXED PLAN)
C. OPTION (OPTIMIZE FOR UNKNOWN)
D. OPTION (NOLOCK)
E. OPTION (RECOMPILE)
F. OPTION (FAST 25)
G. OPTION (MAXDOP 25)
H. OPTION (ROBUST PLAN)

Correct Answer: CE
Explanation/Reference:

Question 143
Which SQL statement should you use?
Note: This question is part of a series of questions that use the same set of answer choices. An answer choice may be correct for more than one question in the series.
You administer a Microsoft SQL Server 2008 database for an inventory management system. The application contains a product table that has the following definition:

```
CREATE TABLE [Production].[Product](
[ProductID] [int] IDENTITY(1,1) NOT NULL,
[Name] [nvarchar](50) NOT NULL,
[ProductNumber] [nvarchar](25) NOT NULL,
[Color] [nvarchar](15) NULL,
[Class] [nchar](2) NULL,
[Style] [nchar](2) NULL,
[Active] [bit] NOT NULL,
[ModifiedDate] [datetime] NOT NULL,
CONSTRAINT [PK_Product_ProductID] PRIMARY KEY CLUSTERED ([ProductID] ASC) ON [PRIMARY]) ON [PRIMARY]
```

You want to add a new field to the Product table to meet the following requirements:
• Allows user-specified information that will be added to records in the Product table.
• Supports the largest storage size needed for the field.
• Uses the smallest data type necessary to support the domain of values that will be entered by users.
You need to add a field named User_Data_1 to support Unicode string values that have a minimum length of two characters and a maximum length of 100 characters.

Which SQL statement should you use?
A. ALTER TABLE [Production].[Product] ADD [User_Data_1] NCHAR(100)
B. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(11,6)
C. ALTER TABLE [Production].[Product] ADD [User_Data_1] VARCHAR(100)
D. ALTER TABLE [Production].[Product] ADD [User_Data_1] MONEY
E. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLMONEY
F. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATE
G. ALTER TABLE [Production].[Product] ADD [User_Data_1] INT
H. ALTER TABLE [Production].[Product] ADD [User_Data_1] BIGINT
I. ALTER TABLE [Production].[Product] ADD [User_Data_1] TINYINT
J. ALTER TABLE [Production].[Product] ADD [User_Data_1] NVARCHAR(100)
K. ALTER TABLE [Production].[Product] ADD [User_Data_1] CHAR(100)
L. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(6,11)
M. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATETIME2
N. ALTER TABLE [Production].[Product] ADD [User_Data_1] DATETIME
O. ALTER TABLE [Production].[Product] ADD [User_Data_1] BIT
P. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLINT
Q. ALTER TABLE [Production].[Product] ADD [User_Data_1] SMALLDATETIME
R. ALTER TABLE [Production].[Product] ADD [User_Data_1] NUMERIC(5,6)

Correct Answer: J
Explanation/Reference:

Question 144
Which SQL query should you use?
You are the database developer for a Microsoft SQL Server 2008 database that contains tables named order and product. The tables have the following definitions:

```
CREATE TABLE [order]
(OrderID INT,
ProductID INT,
CustomerID INT,
OrderDate DATETIME);
CREATE TABLE product
(ProductID INT,
ProductName VARCHAR(100),
```

http://www.aoowe.com
SalePrice money,
ManufacturerName VARCHAR(100));
You need to write a query that will extract a valid XML result set of all ordered products. You also need to ensure that the query conforms to the following schema:

```xml
< ?xml version="1.0" encoding="utf-16"?>
< xsd:schema attributeFormDefault="unqualified" elementFormDefault="qualified" version="1.0"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 < xsd:element name="OrderedProducts">
 < xsd:complexType>
 < xsd:sequence>
 < xsd:element name="ProductID" type="xsd:integer" />
 < xsd:element name="ProductName" type="xsd:string" />
 < xsd:element name="SalePrice" type="xsd:decimal" />
 < xsd:element name="ManufacturerName" type="xsd:string" />
 < xsd:element name="OrderDate" type="xsd:dateTime" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
```

Which SQL query should you use? (Choose Two – complete answers)

   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   FOR XML AUTO ('OrderedProducts');
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   FOR XML AUTO;
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   FOR XML AUTO;
   o.OrderDate,'</OrderedProducts>'
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   FOR XML PATH;
E. SELECT 1 as Tag,0 as Parent,
   p.ProductID as [OrderedProducts!1!ProductID!ELEMENT],
   p.ProductName as [OrderedProducts!1!ProductName!ELEMENT],
   p.SalePrice as [OrderedProducts!1!SalePrice!ELEMENT],
   p.ManufacturerName as [OrderedProducts!1!ManufacturerName!ELEMENT],
   o.OrderDate as [OrderedProducts!1!OrderDate!ELEMENT]
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   FOR XML EXPLICIT;
F. SELECT 1 as Tag,0 as Parent,
   p.ProductID as [OrderedProducts!1!ProductID!ELEMENT],
   p.ProductName as [OrderedProducts!1!ProductName!ELEMENT],
   p.SalePrice as [OrderedProducts!1!SalePrice!ELEMENT],
   p.ManufacturerName as [OrderedProducts!1!ManufacturerName!ELEMENT],
   o.OrderDate as [OrderedProducts!1!OrderDate!ELEMENT]
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   FOR XML EXPLICIT ('OrderedProducts');
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   FOR XML RAW;
   FROM product p
   INNER JOIN [order] o ON p.ProductID = o.ProductID
   FOR XML RAW ('OrderedProducts');

Correct Answer: CE
Explanation/Reference: